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WEAKLY REGULAR STURM-LIOUVILLE PROBLEMS: A

CORRECTED SPECTRAL MATRIX METHOD

CECILIA MAGHERINI

Abstract. In this paper, we consider weakly regular Sturm-Liouville eigenproblems with un-
bounded potential at both endpoints of the domain. We propose a Galerkin spectral matrix

method for its solution and we study the error in the eigenvalue approximations it provides. The
result of the convergence analysis is then used to derive a low-cost and very effective formula for
the computation of corrected numerical eigenvalues. Finally, we present and discuss the results of

several numerical experiments which confirm the validity of the approach.
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1. Introduction

Recently, the author studied a corrected spectral matrix method for solving
weakly regular and singular Sturm-Liouville problems defined over the bounded
domain (−1, 1) with an unbounded potential at the left endpoint, [13]. The numer-
ical results provided by such technique are definitely satisfactory for weakly regular
problems. This suggested to study a generalization of the method for the approx-
imation of the eigenvalues and of the eigenfunctions of problems of the following
type

−y′′(x) + q(x)y(x) = λy(x), x ∈ (−1, 1) ,(1)

αLy(−1) + βLy
′(−1) = 0 , α2

L + β2
L ̸= 0,(2)

αRy( 1) + βRy
′( 1) = 0 , α2

R + β2
R ̸= 0,(3)

where the potential q is given by

(4) q(x) =
S∑

i=1

gi(x)

(1− x)βi(1 + x)γi
, βi, γi < 1, i = 1, . . . , S,

with functions gi at the numerators that are analytical inside and on a Bernstein
ellipse containing [−1, 1]. In the literature, problems of this type with q unbounded
at least at one endpoint are sometimes called weakly regular and it is well known
that their spectrum is composed by real and simple eigenvalues which can be ordered
as an increasing sequence tending to infinity. We will number them starting from
index k = 1, i.e. we will call

{λ1 < λ2 < λ3 < . . .}
the exact spectrum of (1)–(4).

Before proceeding, it is to be said that Sturm-Liouville eigenproblems have many
applications in physics, chemistry, biology, mechanics, and so on as described, for
example, in [14, 20]. Their numerical solution has been studied extensively and
many schemes/codes are available nowadays (see [1, 2, 3, 4, 5, 6, 8, 11, 12, 15, 16,
17, 18, 22, 23, 24] and references therein, to mention just a few).
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Now, regarding problems with a potential function of the form specified in (4), in
[13] we considered only the case S = 2 with β1 = γ1 = β2 = 0, namely problems
with a potential of the form q(x) = g1(x)+g2(x)/(1+x)

γ2 , and a special algorithm
for γ2 ∈ (0, 1) and y(−1) ̸= 0 was derived. As remarked in the same paper, the
results obtained appear to be competitive with those given by other well-known
schemes based on shooting techniques, [4, 11, 12, 15]. A possible explanation may
be that we did not need to use a layer for handling the unbounded (but integrable)
potential at the left endpoint. Concerning alternative matrix methods based on a
spectral collocation approach, it must be said that a number of them, like the ones
studied in [5, 8, 18, 24], refer to problems subject to the Dirichlet condition at both
the endpoints.

These considerations justify the interest in generalizing the method proposed
in [13] and the outline of this paper is the following. In Section 2, we recall the
basic facts concerning the spectral Legendre-Galerkin matrix method introduced in
[13] and we discuss the computation of the coefficient matrix that corresponds to a
potential q of the form in (4). An analysis of the error in the numerical eigenvalues
with respect to the generalized eigenvalue problem size is carried out in Section 3.
In addition, in the same section, we derive a low cost and effective procedure for an
a posteriori correction of the numerical eigenvalues. Finally, in Section 4 we report
and discuss the results of some numerical experiments.

2. Spectral Legendre-Galerkin method

Let ΠN+1 be the space of polynomials of maximum degree N + 1, for a fixed
N ∈ N, and let

SN ≡ {r ∈ ΠN+1 : αL r(−1) + βL r
′(−1) = αR r(1) + βR r

′(1) = 0}(5)

≡ span (R0,R1, . . . ,RN−1) .(6)

We look for an approximation of an eigenfunction y of the following type

(7) zN (x) =
N−1∑
n=0

ζn,NRn(x) ≈ y(x)

where the coefficients ζn,N and the numerical eigenvalue λ(N) are determined by
imposing, see (1),

(8)

N−1∑
n=0

⟨
Rm,−R′′

n + (q − λ(N))Rn

⟩
ζn,N = 0, for each m = 0, . . . , N − 1.

Here ⟨·, ·⟩ is the standard inner product in L2([−1, 1]), i.e.

⟨u, v⟩ =
∫ 1

−1

u(x)v(x)dx, u, v ∈ L2([−1, 1]),

which is naturally suggested by the Liouville normal form of the SLP we are study-
ing. We can write (8) as the following generalized eigenvalue problem

(9) (AN +QN ) ζN = λ(N)BNζN

where ζN = (ζ0N , . . . , ζN−1,N )
T
,

(10) AN = (amn) , BN = (bmn) , QN = (qmn) , m, n = 0, . . . , N − 1,

with

(11) amn = −⟨Rm,R′′
n⟩, bmn = ⟨Rm,Rn⟩, qmn = ⟨Rm, qRn⟩.


