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EVEN-ODD CYCLED HIGH-ORDER SPLITTING FINITE

DIFFERENCE TIME DOMAIN METHOD FOR MAXWELL’S

EQUATIONS
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Abstract. In the paper, an even-odd cycled high-order splitting finite difference time domain
scheme for Maxwell’s equations in two dimensions is developed. The scheme uses fourth order spa-

tial difference operators and even-odd time step technique to make it more accurate in both space

and time. The scheme is energy-conserved, unconditionally stable and efficient in computation.
We analyze in detail the stability, dispersion and phase error for the scheme. We prove that the

scheme is energy conservative. Numerical experiments show numerically the energy conservation,

high accuracy, and the divergence free accuracy. Furthermore, the developed scheme is applied to
compute of the grounded coplanar waveguides.
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1. Introduction

Maxwell’s equations are widely used in computational electromagnetism appli-
cations such as, radio frequency, microwave, antennas, and air-craft radars and so
on. Several ADI and splitting finite difference time domain methods have been
developed to compute the solutions of Maxwell’s equations. Second order schemes
are commonly used for moderate numerical results, however, high order accuracy is
more important in large scale applications. When computing modern problems of
long distance wave propagations and moderately high frequency propagations, there
are great interests to develop time and spatial high-order and energy-preserving
schemes.

Finite difference time domain method (FDTD) for Maxwell’s equations was first
introduced by Yee [17] in 1966 which was further developed by other researcher-
s [12,14] to a very efficient numerical algorithm in computational electromagnetics.
However, the FDTD method is only conditionally stable and has large computa-
tional costs. Papers [13,19] proposed ADI-FDTD schemes for Maxwell’s equations
which are unconditionally stable and of second order accuracy. Papers [1, 2] pro-
posed energy-conserved spatial second-order S-FDTD schemes for Maxwell’s equa-
tions which are efficient. The schemes are energy conserved, unconditionally stable
and non-dissipative. Papers [7, 8] developed energy-conserved spatial second-order
S-FDTD schemes for metamaterial electromagnetics. Paper [9] developed a spa-
tial fourth order energy-conserved S-FDTD schemes, EC-S-FDTD(1,4) and EC-S-
FDTD(2,4), for Maxwell’s equations, which are fourth order accurate in space.

In this paper, we develop an even-odd cycled energy-conserved splitting finite
difference time domain scheme for solving Maxwell’s equations in two dimensions,
Even-Odd cycled 4th order EC-S-FDTD, shorten to the EO-4th-EC scheme, with
fourth order accuracy in space and second order accuracy in time. For EO-4th-EC
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scheme, we apply the spatial fourth order difference operators to a two stage split-
ting technique for each time step. The scheme consists of odd and even time step
where for the odd time step, electric field in y-direction Ey and the intermediate
value of magnetic field Hz are computed in stage one, following that electric field
in x-direction Ex and Hz are solved in stage two. For the even time step, Ex and
intermediate value Hz are computed in stage one and Ey and Hz are computed in
stage 2. In this scheme, the spatial fourth order difference operators are obtained
by a linear combination of two central differences on with a spatial step and one
with three spatial steps while the boundary node difference operators are careful-
ly defined keeping in mind the energy conservation and fourth order accuracy in
space. Another important feature is that the use of even-odd two cycles achieves
high-order accuracy in time while only using two stages in EO-4th-EC. We analyze
in detail the stability, dispersion and phase error for the scheme. We also prove the
scheme to be energy conservative. To find the stability of the scheme, the equiva-
lent expressions for the even and odd time steps are computed by eliminating the
intermediate terms. The expressions further allow us to compute the growth factor
for each time step and the scheme overall. The growth factors help to determine
the dispersion relationships of our scheme at each time step. The paper further
focuses on numerical tests of the scheme. The phase velocity error of the proposed
scheme are compared and computed with those other schemes such as ADI-FDTD,
CN, EC-S-FDTDI, EC-S-FDTDII and EC-S-FDTD (2,4). The energy conserva-
tion, accuracy errors and the divergence free approximations are computed and
compared to other schemes as well. Overall, the proposed scheme is found to be
unconditionally stable and non-dissipative. The scheme also conserves energy and
has higher accuracy.

This high order scheme is finally used in applications of MMIC such as coplanar
waveguides. Coplanar waveguide, CPW, is made of two parallel plates made of
conducting material, such as copper or gold, that run with some dielectric materials
in between. In the numerical experiments, two lumped ports are attached on top
of a grounded CPW to excite the waveguide. It is shown that the electric wave
produced from the lumped ports is strong in the metal and weakens as it travels
through the dielectric material. The dielectric substrate is made thick enough that
the EM wave dies out before it reaches the conductor at the bottom of the GCPW.
We also analyze the wave propagation of an electric wave in a transition between a
CPW and a rectangular waveguide. This transition consists of back to back CPW
and rectangular waveguide made of linearized array of via holes. The transition is
excited with a magnetic source at the center of the domain. As the magnetic wave
moves outwards it changes its shape as it moves into a different material.

2. Model and Scheme

2.1. Maxwell’s Equations in 2D. Consider the 2D transverse electric polariza-
tion case in a lossless medium and there is no source. We have
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