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FINITE VOLUME ELEMENT METHOD FOR PREDICTING

ELECTROSTATICS OF A BIOMOLECULE IMMERSED IN AN

IONIC SOLVENT
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Abstract. Poisson-Boltzmann equation (PBE) is a classic implicit continuum model to predict
the electrostatic potentials of a solvated biomolecule. In this paper, we present a finite volume
element method specific to the elliptic interface problem with a non-homogeneous flux condition

for solving PBE and provide a follow-up analysis. The new PBE solver is fulfilled through both
Fortran and Python, afterwards the local Poisson test model coupled with an analytical solution
is adopted to well validate the program. Lastly, an application of the new solver to the prediction
of solvation free energies of the proteins is made.
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1. Introduction

The electrostatics referring to a protein immersed in an ionic solvent are impor-
tant to recognize its biological structure and the various relevant functions [22, 26].
At present, one commonly-used mathematical model for predicting electrostatics
is the Poisson-Boltzmann model, which has been employed in various applications
such as protein docking, ion channel modeling, and rational drug design [21]. Up
to now, the mathematical theory of Poisson-Boltzmann equation (PBE) and its
variants have been well analyzed [14, 29] by considering an electrostatic free energy
minimization problem subject to the Poisson dielectric model. Meanwhile, these
models have been efficiently and accurately solved by finite element method (FEM)
[1, 12, 15, 28], finite difference method [27, 38], boundary element method [19],
and some mixed methods [2, 34, 35, 36]. Besides, to simulate the electrodiffusion
in numerous biological processes, Poisson-Nernst-Planck equation (PNP) as well as
its improved models [20, 23] have also been proposed and commonly used as well.

It is well-known that FEM is used to solve the interface problems of both PBE
and PNP thanks to its flexibility of handling the complex interface. As alternatives,
finite volume methods not only can deal with the complex interface very well,
but also preserve the local conservation laws of some physical quantities such as
mass and flux. Additionally, in comparison with FEM, its computational cost is
relatively less while it aims at the explicit evolved equation with time. To authors’
best knowledge, it only has been used so far to solve on Cartesian grids both
PBE [10] and size-modified PBE [24] without explicitly considering the interface,
and to predict the double layer forces between spherical colloidal particles [17],
latter of which considered the Poisson equation without interface. Therefore, finite
volume methods have never been used to solve PBE and its variants yet. The finite
volume element method (FVEM, see e.g. [3, 11, 16, 33, 37]), one type of finite
volume methods, has gained increasing attention recently. Owe to the same mesh
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and basis functions being used in the discretization process as that of FEM, FVEM
possesses almost all the advantages of FEM such as flexibility to handle the complex
interface and domain with arbitrary geometry. Meanwhile, the preservation of
local conservation laws about certain physical quantities makes FVEM especially
important for PNP [20]. As the first step of several potential subsequent works, we
attempt to solve PBE via FVEM in this work.

By virtue of the decomposition scheme intended for isolating the singularities
caused by the Dirac delta distributions, the solution u of PBE is splitted into three
parts: solution G in an analytical expression, solution Ψ subject to a linear interface
problem with a non-homogeneous flux condition on the interface, and solution Φ̃
tied to a nonlinear interface problem. Through literature on finite volume methods,
an elliptic equation with a non-homogenous flux condition on the interface has
never been discussed yet. Our work is the first to propose a new technique to
overcome the difficulties induced by the non-homogenous flux condition. For any
vertices on the interface in an given unstructured mesh, we artificially separate their
control volumes into pairs so that the interface lies on the common boundary of
the two sub-control volumes. As a result, the non-homogeneous flux condition can
be incorporated into the variational form through integration-by-part performed on
those separated sub-control volumes.

Based on the proposed technique, we formulate a new finite volume element
PBE solver and fulfill it in both Python and Fortran. The local Poisson test model
owning an analytical solution in a series form involving Legendre polynomials is used
to validate the new program. The tests show that applying our technique to deal
with the non-homogeneous flux condition gives rise to the second-order convergence
in L2 norm and the first-order convergence inH1 norm, which is exactly the same as
FVEM has achieved [33]. As an application, the new solver is subsequently applied
to predict the solvation free energies of some proteins. Meanwhile, the obtained
energies are compared to the ones derived from the finite element PBE solver [28]
engaging the same unstructured meshes. These numerical tests illustrate that the
predicted solvation free energies are quite close to each other although different
numerical methods are adopted.

The rest of the paper is organized as follows. A short review of PBE solution
decomposition is given in Section 2. Section 3 is devoted to presenting our FVEM
formulation specific to the regularized PBE. At the end of this section, a new
algorithm for solving PBE is presented. We present an analysis of the FVEM for
PBE in Section 4. The validation test on local Poisson test model as well as the
application of the new solver in predicting the solvation free energy is conducted in
Section 5.

2. Solution decomposition of the Poisson-Boltzmann model

Let Ω be a sufficiently large bounded domain of R3 (See Figure 1 for an illustra-
tion) satisfying

Ω = Dp ∪Ds ∪ Γ,

where Dp denotes a solute region hosting a protein molecule with np atoms, Ds

denotes a solvent region, and Γ is the interface between Dp and Ds. Under the
implicit solvent approach, both Dp and Ds are treated as continuum media with
dielectric constants ϵp and ϵs, respectively. Then for a symmetric 1:1 ionic solvent
(e.g., a salt solution with sodium (Na+) and chloride (Cl−) ions), the electrostatic
potential u (in unit kBT/ec) can be predicted by the following boundary value


