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A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT

METHOD FOR GENERAL SECOND-ORDER ELLIPTIC

PROBLEM
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Abstract. This paper proposes a stabilizer free weak Galerkin (SFWG) finite element method

for the convection-diffusion-reaction equation in the diffusion-dominated regime. The object of
using the SFWG method is to obtain a simple formulation which makes the SFWG algorithm
(9) more efficient and the numerical programming easier. The optimal rates of convergence
of numerical errors of O(hk) in H1 and O(hk+1) in L2 norms are achieved under conditions(
Pk(K), Pk(e), [Pj(K)]2

)
, j = k + 1, k = 1, 2 finite element spaces. Numerical experiments are

reported to verify the accuracy and efficiency of the SFWG method.

Key words. Stabilizer free weak Galerkin methods, weak Galerkin finite element methods, weak
gradient, error estimates.

1. Introduction

In this paper, we are concerned with the development of numerical methods
for the following partial differential equation with boundary conditions using a
stabilizer free weak Galerkin finite element method

−∇ · (α∇u) + βββ · ∇u+ cu = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω is a polygonal or polyhedra domain in Rd(d = 2, 3), α = α(x) is the
diffusion coefficient matrix, βββ = βββ(x) is the convection coefficient and c = c(x) is
the reaction coefficient in relevant applications. We suppose that α = (αij(x))d×d ∈
[W 1,∞(Ω)]d×d, 0 ≤ c(x) ≤ M,βββ ∈ [W 1,∞(Ω)]d and c − 1

2∇ · βββ > c0 > 0 for some
constant c0 and there exists positive constants αm ≤ αM such that

αmξT ξ ≤ ξTα(x)ξ ≤ αMξT ξ, ∀ξ ∈ Rd, x ∈ Ω.

The convection-diffusion equation has numerous practical applications in many
fields such as materials sciences, fluid flows, and image processing. There are sev-
eral numerical methods in existing literature for solving the convection-diffusion
equation.

The weak form of the problem (1)-(2) is to find u ∈ H1
0 (Ω) such that

(α∇u,∇v) + (βββ · ∇u, v) + (cu, v) = (f, v),∀v ∈ H1
0 (Ω).(3)

The standard weak Galerkin method for the problem (1)-(2) seeks weak Galerkin
finite element approximation uh = {u0, ub} satisfying

(α∇wu,∇wv) + (βββ · ∇wu, v) + (cu, v) + s(uh, v) = (f, v),(4)

for all v = {v0, vb} satisfying vb = 0 on ∂Ω, where ∇w is the weak gradient operator
and s(uh, v) in (4) is a stabilizer term that ensures a sufficient weak continuity for
the numerical approximating. Recently, the weak Galerkin method has been devel-
oped to solve the elliptic equations [3, 6, 5], singularly perturbed reaction-diffusion
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problems [1], the biharmonic problems [9], the Helmholtz equation [8], and the
Maxwell equations [7]. More recently, Lin, et al. in [4], proposed a simple WG
method for the convection-diffusion-reaction problem (1)-(2) with singular pertur-
bation. One of the complexities of the WG methods and other discontinuous finite
element methods is contained the stabilization terms. To reduce the programming
complexity, the stabilizer free weak Galerkin finite element method, introduced by
Ye and Zhang in [13], refers to the numerical techniques for solving Poisson equa-
tion on polytopal meshes in 2D or 3D, where there is a j0 > 0 so that as long
as the degree j of the weak gradient satisfies j ≥ j0, the new scheme will work
and the optimal order of convergence can be achieved. In [2], Al-Taweel and Wang
proved the optimal degree of weak gradient of the SFWG method to improve the
efficiency of SFWG and to avoid the numerical difficulties associated with using
high degree weak gradients. The benefits of using the SFWG method compared
to the standard weak Galerkin method (4) are twofold: firstly, the SFWG method
has a simple formulation which is closer to the weak form (3) and thus the imple-
mentation of the SFWG finite element method is easier than that of the standard
weak Galerkin method; secondly and more importantly, it is more efficient than the
standard WG method (4). The goal of this article is to study a stabilizer free weak
Galerkin finite element method for solving convection-diffusion-reaction equations
(1)-(2) on uniform triangular partitions and then establish the error analysis in the
H1 norm and L2 norm.

This paper is organized as follows: In Section 2, we define weak gradient, weak
divergence, and describe our SFWG finite element spaces and the SFWG scheme
for the convection-diffusion-reaction equations (1)-(2). In Section 3, we will derive
optimal order L2 error estimates for the SFWG finite element method for solving
the equations (1)-(2). Numerical experiment results are presented in Section 4 to
validate the theoretical results. Finally, in Section 5, we present some concluding
remarks.

2. Weak Galerkin Finite Element Schemes

Let Th be a partition of the domain Ω consisting of convex polygons in 2D or
polyhedra in 3D. Suppose that Th is shape regular in the sense defined by (11)-
(12). Let Eh be the set of all edges in Th, let let E0

h = Eh \ ∂Ω be the set of all
interior edges. For each element K ∈ Th, denote by hK the diameter of K, and
h = maxK∈Th

hK the mesh size of Th.
On each K, let Pk(K) be the space of all polynomials with degree k or less. Let

Vh be the weak Galerkin finite element space associated with K ∈ Th defined as
follows:

Vh = {v = {v0, vb} : v0|K ∈ Pk(K), vb|e ∈ Pk(e),K ∈ Th, e ∈ ∂K},(5)

where k ≥ 1 is a given integer. In this instance, the component v0 symbolizes the
interior value of v, and the component vb symbolizes the edge value of v on each K
and e, respectively. Let V 0

h be the subspace of Vh defined as:

V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}.(6)

Definition 2.1. (Weak Gradient) For any v = {v0, vb}, the weak gradient ∇wv ∈
[Pj(K)]d, where j > k, is defined on K as the unique polynomial satisfying

(∇wv,q)K = −(v0,∇ · q)K + ⟨vb,q · n⟩∂K , ∀q ∈ [Pj(K)]d,(7)

where n is the unit outward normal vector of ∂K.


