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ERROR ESTIMATES FOR THE LAPLACE INTERPOLATION ON

CONVEX POLYGONS

WEIWEI ZHANG, LONG HU, ZONGZE YANG, AND YUFENG NIE

Abstract. In the natural element method (NEM), the Laplace interpolation error estimate on
convex planar polygons is proved in this study. The proof is based on bounding gradients of the
Laplace interpolation for convex polygons which satisfy certain geometric requirements, and has
been divided into several parts that each part is bounded by a constant. Under the given geometric

assumptions, the optimal convergence estimate is obtained. This work provides the mathematical
analysis theory of the NEM. Some numerical examples are selected to verify our theoretical result.
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1. Introduction

In engineering practice, many problems in mechanics and physics can be reduced
to solve mathematical problems of ordinary differential equations or partial differ-
ential equations under given boundary conditions. With the rapid development of
computer technology, many numerical methods such as weighted residual method,
finite element method, finite difference method, meshless method [1] and boundary
element method have been developed to solve the engineering problems.

In recent decades, meshless methods have emerged, such as smooth particle
hydrodymics method (SPH) [2, 3], reproducing kernel particle method (RKPM)
[4], moving least-square approximation method (MLS) [5], the partition of unity
method [6], radial basis functions (RBF) [7], point interpolation method (PIM) [8]
and natural element method (NEM) [9], and these methods have been developed to
solve partial differential equations (PDEs). In the meshless method, shape functions
are constructed in terms of a group of discrete nodes, and no predefined nodal
connectivity is required. The nodes are unstructured and can be freely moved,
inserted and deleted. The meshless method does not need to generate mesh, thus it
has some advantages in handling crack propagation or large deformation problems.

The NEM is a meshless method based on the concept of natural neighbor inter-
polants and on the discretization by Voronoi diagram and Delaunay triangulation.
The NEM interpolant is constructed on the basis of Voronoi diagram [10], which is
unique for a given set of distinct nodes in the plane. It means that the NEM inter-
polant is determined once the location of nodes is determined. The dual Delaunay
triangles [11] are constructed for nodal integration and numerical computation of
the interpolant. However, unlike finite element method (FEM) where angle restric-
tions are imposed on the triangles for the convergence of the method, there are
no such constraints on the size, shape, and angles of the triangles in NEM. Unlike
most of meshless methods, the natural neighbor interpolants have the properties of
interpolation of nodal data, allowing direct imposition of essential boundary condi-
tions as FEM does. On the other hand, the NEM presents some characteristics of
meshless methods, such as accurate shape functions with quasi-spherical influence
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zones and robust approximations with no user-defined parameter on non-uniform
grids, and it can handle complex geometry or crack propagation problems easily.
In general, the NEM not only has the advantages of finite element method and
meshless method, but also overcomes some of their shortcomings.

Since Braun and Sambridge [9] firstly introduced NEM in 1995, many researchers
have applied it to solve mechanical problems. Sukumar et al. [12, 13] used NEM
to study the application of elliptic boundary value problems for elastic mechan-
ics, and constructed the C1 natural neighbor interpolation to solve fourth-order
elliptic partial differential equations. Cueto et al. [14, 15] used α-shapes in the
context of NEM to ensure the linear precision of the interpolant over convex and
non-convex boundaries. Bueche et al. [16] investigated NEM in two-dimensional
linear elastodynamics and studied vibration and wave propagation problem. Toi
Yutaka [17, 18] analyzed the elastic-plastic problem and brittle fracture problem
with NEM. Cai and Zhu [19, 20] used a local Petrov-Galerkin method to establish
a global equilibrium equation, which has fast convergence rate and high accuracy.
Gonzalez [21] established a novel algorithm to simulate free-surface fluid dynamics
phenomena. Alfaro [22] used NEM to simulate hollow profiles. Cho et al. [23]
presented a mixed natural element approximation of Reissner-Mindlin plate for the
locking-free numerical analysis of plate-like thin elastic structures.

The application of NEM has been developed for about twenty years [24, 25], while
the theoretical research of convergence, stability and error analysis is rare and needs
to be studied deeply. Gillette et al. [26] made a brief study on the error estimates for
generalized barycentric interpolation, including the Sibson interpolation. Alexander
et al. [27] proved interpolation error estimates for the mean value coordinates over
convex polygons. In a similar fashion to estimates shown for different coordinates in
these papers, we study another interpolation error of NEM-Laplace interpolation.

The rest of the paper is organized as follows. In Section 2, we review the relevant
background on geometric constraints, Laplace interpolation and interpolation the-
ory in Sobolev Spaces. In Section 3, the estimate is divided into several parts and
the initial estimate is established for each part. Our result is obtained in Theorem
2 which gives a constant bound on the gradients of the Laplace interpolation. In
Section 4, two numerical examples are given to verify our analysis. Finally the
conclusion is drawn in Section 5.

2. Background

2.1. Geometric constraints. Let Ω be a convex polygon in R2, which consists of
n nodes, x1,x2, · · ·,xn, and let the interior angle at xi be βi. The largest distance
between two points in Ω is denoted by diam(Ω) and the radius of the largest

inscribed circle is denoted ρ(Ω), then the aspect ratio γ is defined as γ := diam(Ω)
ρ(Ω) .

Now we give the following geometric constraints.
G1. Bounded aspect ratio: There exists a constant γ∗ > 0 such that 2 ≤

γ ≤ γ∗.
G2. Minimum edge length: There exists a constant d∗ > 0 such that

|xi − xj | ≥ d∗ for all i ̸= j.
G3. Maximum interior angle: There exists a constant β∗ > 0 such that

βi < β∗ < π for all i.
Under the above geometric constraints, two other closely related properties also
hold.

G4. Minimum interior angle: There exists a constant β∗ > 0 such that
βi > β∗ > 0 for all i.


