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A DEEP LEARNING GALERKIN METHOD FOR THE

SECOND-ORDER LINEAR ELLIPTIC EQUATIONS

JIAN LI*, WEN ZHANG, AND JING YUE

Abstract. In this paper we propose a Deep Learning Galerkin Method (DGM) based on the
deep neural network learning algorithm to approximate the general second-order linear elliptic
problem. This method is a combination of Galerkin Method and machine learning. The DGM

uses the deep neural network instead of the linear combination of basis functions. Our algorithm
is meshfree and we train the neural network by randomly sampling the space points and using the
gradient descent algorithm to satisfy the differential operators and boundary conditions. Moreover,
the approximate ability of a neural networks’ solution to the exact solution is proved by the

convergence of the loss function and the convergence of the neural network to the exact solution in
L2 norm under certain conditions. Finally, some numerical experiments reflect the approximation
ability of the neural networks intuitively.
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1. Introduction

Mathematical models in many fields can be described by partial differential equa-
tions (PDEs). As early as the establishment of the calculus theory, PDEs were
used to describe various natural phenomena and were applied to various scientific
or engineering technologies. The high-dimensional partial differential equations
are applied to physics, engineering, aerospace and other aspects. The well-known
examples include the Schrödinger equation in quantum many-body problem, the
nonlinear Black-Scholes equation for pricing financial derivatives, the Hamilton-
Jacobi-Bellman equation in dynamic programming and so on. Unfortunately, the
solutions of most PDEs cannot be expressed in the form of analytical solutions,
so their numerical solutions are particularly important. Though many numerical
methods have been developed so far for solving PDEs, such as finite difference
method, finite element method and finite volume method, these methods still have
certain limitations. As for the higher dimensional problems, the computational
cost of the surge in grid points goes up exponentially with the dimensionality. As
a result, solving numerical solutions has been a longstanding challenge.

With the explosive growth of available data and computing resources, the deep
neural network model has shown remarkable success in artificial intelligence[1, 2, 3,
4, 5]. Recently, [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] have proposed that it can use
the neural networks to solve PDEs. The deep neural networks with many layers
seem to do a surprisingly good job in modeling complicated datasets. Besides,
many effective algorithms are proposed to solve some high-dimensional PDEs in
[18, 27, 28, 30, 31, 33, 34, 35, 36, 37]. In these papers, most of them only give
numerical computations and illustrate the validity of numerical solutions through
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various pictures. But there are no strict proofs about the existence and uniqueness
of the exact solutions as well as the convergence of the error between the numerical
solutions and the exact solutions. Here, based on the framework of [6], we directly
apply the DGM for solving the second-order PDEs without using Monte Carlo
Method. This method is the merger of the Galerkin Method and machine learning,
which is different from the traditional Galerkin Method. The DGM uses the deep
neural network instead of the linear combination of basis functions. We train the
neural network by randomly sampling the space points and using the gradient
descent algorithm to satisfy the differential operators and boundary conditions.
We don’t need to form a grid in this process. This is also an important reason why
the DGM can solve the high-dimensional PDEs. Obviously, the method presented
is much simpler but more effective. Moreover, we obtain the convergence of the
loss function and the neural network, respectively. Finally, the performance of the
method is demonstrated by some numerical experiments.

The rest of paper is organized as follows. In the next section, we will introduce a
method that solves high dimensional PDEs with meshfree deep learning algorithm.
In section 3, the theorem to illustrate the convergence of the loss function is proved.
We also give the proof of another theorem to guarantee the convergence of neural
network’s solution in section 4. Finally, a series of numerical experiments are given
in section 5.

2. Methodology

Let Ω ⊂ Rd, (d = 2, 3) be a bounded set with a sufficiently smooth boundary
∂Ω. We consider a class of the second-order linear elliptic equations in combination
with Dirichlet boundary conditions:

αu(x)−∆u(x) = f(x), in Ω,(1)

u(x) = g(x), on ∂Ω,(2)

where α > 0 is a positive constant.
In the following, recall the classical Sobolev spaces:

Hk(Ω) =
{
ν|ν ∈ L2(Ω), Dk

w(ν) ∈ L2(Ω),∀α : |α| ≤ k
}
,

Hk
0 (Ω) =

{
ν ∈ Hk(Ω) : ν|∂Ω = 0

}
.

Especially, L2(Ω) =
{
ν(x)|

( ∫
Ω
|ν(x)|2dx

) 1
2

<∞
}
is sometimes defined by H0(Ω).

Here, Dk
w(ν) is the generalized k-order derivative of ν and its classical norm is

equipped with the norm ∥ν∥k.
For simplicity of notations, let us denote

G[u](x) = αu(x)−∆u(x)− f(x).

By the Lax-Milgram theorem, the second-order linear elliptic problem (1)-(2) has
a unique solution

u ∈ H2(Ω) such that ∥u∥2 ≤ C(∥f∥0 + ∥g∥3/2,∂Ω),(3)

where H3/2(∂Ω) is equipped with the trace norm

∥ϕ∥3/2,∂Ω = inf
{
∥u∥2

∣∣u ∈ H2(Ω) and u
∣∣
∂Ω

= ϕ
}
.
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