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A MODIFIED PRIMAL-DUAL WEAK GALERKIN FINITE

ELEMENT METHOD FOR SECOND ORDER ELLIPTIC

EQUATIONS IN NON-DIVERGENCE FORM

CHUNMEI WANG

Abstract. A modified primal-dual weak Galerkin (M-PDWG) finite element method is designed

for the second order elliptic equation in non-divergence form. Compared with the existing PDWG
methods proposed in [6], the system of equations resulting from the M-PDWG scheme could be
equivalently simplified into one equation involving only the primal variable by eliminating the dual

variable (Lagrange multiplier). The resulting simplified system thus has significantly fewer degrees
of freedom than the one resulting from existing PDWG scheme. Optimal order error estimates
are derived for the numerical approximations in the discrete H2-norm, H1-norm and L2-norm
respectively. Extensive numerical results are demonstrated for both the smooth and non-smooth

coefficients on convex and non-convex domains to verify the accuracy of the theory developed in
this paper.
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1. Introduction

In this paper, we consider the second order elliptic equation in non-divergence
form which seeks an unknown function u = u(x) such that

d∑
i,j=1

aij∂
2
iju = f, in Ω,

u = 0, on ∂Ω,

(1)

where Ω ⊂ Rd(d = 2, 3) is an open bounded domain with Lipschitz continuous
boundary ∂Ω, the load function f ∈ L2(Ω), and the coefficient tensor a = (aij)d×d ∈
[L∞(Ω)]d×d is symmetric, uniformly bounded and positive definite in the sense that
there exist constants C1 > 0 and C2 > 0 such that

(2) C1ξ
T ξ ≤ ξTaξ ≤ C2ξ

T ξ, ∀ξ ∈ Rd, x ∈ Ω.

For the simplicity of notation, denote by L :=
∑d

i,j=1 aij∂
2
ij the second order partial

differential operator.

The second order elliptic problem in non-divergence form arises in various ap-
plications such as probability and stochastic processes [2]. This type of problem
also plays an important role in the research of fully nonlinear partial differential
equations in conjunction with linearization techniques (e.g., the Newton’s iterative
method) [1, 3]. In such applications, the coefficient tensor a(x) is often hardly
smooth. Therefore, it is crucial to develop effective numerical methods for the
model problem (1) with nonsmooth coefficient tensor. Readers are referred to [6]
for more details of recent work developed for the model problem (1) . f The goal of
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this paper is to develop a modified primal-dual weak Galerkin (M-PDWG) scheme
for the second order elliptic problem in nondivergence form (1), which is different
from and advantageous over the one proposed in [6]. The system of equations aris-
ing from the M-PDWG scheme could be equivalently simplified into one equation
by eliminating its dual variable (Lagrange multiplier). The simplified system in-
volves only the primal variable and thus has significantly fewer degrees of freedom
compared to the PDWG scheme proposed in [6]. The main contribution of the
present paper is that the numerical scheme admists a simplified form with reduced
computational complexity. Our theory for the M-PDWG method is based on two
assumptions: (1) the H2-regularity of the exact solution of the model problem (1);
and (2) the coefficient tensor a(x) is piecewise continuous and satisfies the uni-
form ellipticity condition (2). Optimal order error estimates are established for the
primal variable in a discrete H2-norm and for the dual variable in the L2-norm.
Moreover, the convergence theory is derived for the primal variable in the H1 norm
and L2 norm under some smoothness assumptions for the coefficient tensor a(x).
Numerical examples are presented to illustrate the accuracy of the theory developed
for the M-PDWG method.

The paper is organized as follows. In Section 2, we present the weak formulation
for the model problem (1). Section 3 is devoted to a review of weak second order
differential operator and its discretization. In Section 4, we describe the M-PDWG
finite element method for the model problem (1). Section 5 presents a simplified
system resulting form the M-PDWG method proposed in Section 4. Section 6 is
devoted to a stability analysis for the M-PDWG scheme. Section 7 presents the error
equations for the numerical scheme. In Section 8, we derive an optimal order error
estimate for the M-PDWG method in a discrete H2 norm. Section 9 establishes
some error estimates in the usual H1 norm and L2 norm for the primal variable. In
Section 10, the numerical experiments are presented for the M-PDWG scheme for
smooth and non-smooth coefficient tensor a(x) on convex and non-convex domains.

2. Variational Formulations

We shall briefly review the weak formulation of the second order elliptic model
problem (1) in non-divergence form [6].

Theorem 2.1. [4] Assume (1) Ω ⊂ Rd is a bounded convex domain; (2) the coef-
ficient tensor a = (aij) ∈ [L∞(Ω)]d×d satisfies the ellipticity condition (2); and (3)
the Cordès condition holds true; i.e., there exists an ε ∈ (0, 1] such that

(3)

∑d
i,j=1 a

2
ij

(
∑d

i=1 aii)
2
≤ 1

d− 1 + ε
in Ω.

There exists a unique strong solution u ∈ H2(Ω)∩H1
0 (Ω) of the model problem (1)

satisfying

(4) ∥u∥2 ≤ C∥f∥0,

for any given f ∈ L2(Ω), where C is a constant depending on d, the diameter of Ω,
C1, C2 and ε.

Throughout this paper, we assume the model problem (1) has a unique strong
solution in H2(Ω) ∩H1

0 (Ω) with a priori estimate (4).


