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CONVERGENCE ANALYSIS OF ADI ORTHOGONAL SPLINE

COLLOCATION WITHOUT PERTURBATION TERMS

BERNARD BIALECKI AND RYAN I. FERNANDES

Abstract. For the heat equation on a rectangle and nonzero Dirichlet boundary conditions,
we consider an ADI orthogonal spline collocation method without perturbation terms, to specify
boundary values of intermediate solutions at half time levels on the vertical sides of the rectangle.
We show that, at each time level, the method has optimal convergence rate in the L2 norm in

space. Numerical results for splines of orders 4, 5, 6 confirm our theoretical convergence rates and
demonstrate suboptimal convergence rates in the H1 norm. We also demonstrate numerically that
the scheme without the perturbation terms is applicable to variable coefficient problems yielding

the same convergence rates obtained for the heat equation.

Key words. Convergence, alternating direction implicit method, orthogonal spline collocation,
perturbation terms.

1. Introduction

The alternating direction implicit (ADI) method is a popular and useful tech-
nique for solving partial differential equations on rectangles. Such methods re-
duce the solution of multi-dimensional problems to the solution of a collection
of independent discrete one-dimensional problems in the coordinate directions.
ADI techniques have been used in recent years to solve a variety of problems
in various fields such as biology, engineering, finance, physics (see, for example,
[1, 8, 13, 14, 16, 19, 23, 25, 31, 32]).

ADI methods were first introduced, in the context of finite differences, by Peace-
man and Rachford [20] to solve parabolic and elliptic problems with zero Dirichlet
boundary conditions. When extending the ADI finite difference method to nonzero
Dirichlet boundary conditions, some authors included additional terms, called ‘per-
turbation terms’, to specify intermediate solutions at half time levels on vertical
sides of the rectangle (see, for example, [12, (2.8)], [27, (13), (14) on pg. 549, (35) on
pg. 555], [29, (7.3.11)], [30, (4.4.20), (4.4.21)]). The inclusion of perturbation terms
preserves the optimal convergence rate in the discrete H1 norm in space. However,
it has been shown in [17, 3] for the heat equation and a variable coefficient parabolic
equation, respectively, that the ADI finite difference scheme without perturbation
terms has optimal convergence rate in the discrete L2 norm in space. This impor-
tant finding opened the door to an application of the ADI finite difference method
to the solution of parabolic equations with Dirichlet boundary conditions on non-
rectangular sets. In [4], for the first time in the literature, we have formulated
and analyzed an ADI finite difference method without the perturbation terms on a
convex set.

Over the past several years ADI orthogonal spline collocation (OSC) has proved
to be an efficient technique to solve time dependent partial differential equation
problems on rectangles and rectangular polygons (see [5, 6, 13, 14, 15, 16, 22, 24, 26]
and references therein). The ADI OSC scheme was analyzed in [15] for the solution
of the heat equation with zero Dirichlet boundary conditions on a rectangle. The
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ADI OSC scheme with perturbation terms was analyzed in [5] for the solution of a
variable coefficient parabolic equation with nonzero Dirichlet boundary conditions
on a rectangle. The purpose of the present paper is to prove the optimal convergence
rate in the L2 norm of the ADI OSC scheme without perturbation terms for the
solution of the heat equation

(1) ut + (L1 + L2)u = f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

where Ω = (a, b)× (c, d),

(2) L1u = −uxx, L2u = −uyy,
with the initial and nonzero Dirichlet boundary conditions given by

(3) u(x, y, 0) = g1(x, y), (x, y) ∈ Ω,

(4) u(x, y, t) = g2(x, y, t), (x, y, t) ∈ ∂Ω× (0, T ].

While we define the ADI OSC scheme and give convergence analysis for the heat
equation, we demonstrate by a numerical example that the scheme without the
perturbation terms is applicable to variable coefficient parabolic problems yielding
the same convergence rates as those for the heat equation. We expect the result
of this paper to impact applications and convergence analysis of the ADI OSC
method for parabolic equations with nonzero Dirichlet boundary conditions on non-
rectangular sets [7].

In section 2 we give Preliminaries. The ADI OSC schemes with and without
perturbation terms are described in section 3. Convergence analysis of the ADI
scheme without perturbation terms is carried out in section 4. In section 5, errors
and convergence rates of the ADI OSC schemes with and without perturbation
terms are presented for splines of orders 4, 5, 6. Concluding remarks are given in
section 6.

2. Preliminaries

Let {xi}Nx
i=0 and {yj}

Ny

j=0 be respectively partitions (in general nonuniform) of

[a, b] and [c, d] such that

a = x0 < x1 < · · · < xNx−1 < xNx = b, c = y0 < y1 < · · · < yNy−1 < yNy = d.

Let Ixi = (xi−1, xi), I
y
j = (yj−1, yj), h

x
i = xi − xi−1, h

y
j = yj − yj−1, and let

hx = min
i
hxi , hx = max

i
hxi , hy = min

j
hyj , hy = max

j
hyj ,

h = max(hx, hy).

We assume that a collection of the partitions {xi}Nx
i=0×{yj}

Ny

j=0 of Ω is regular, that
is, there exist positive constants σ1, σ2, and σ3 such that for every partition in the
collection, we have

σ1hx ≤ hx, σ1hy ≤ hy, σ2 ≤ hx

hy
≤ σ3.

In the following, we assume that a natural number r ≥ 3. Let Pr denote the set
of polynomials of degree ≤ r. Let Mx, M0

x, My, and M0
y be the spaces defined by

Mx = {v ∈ C1[a, b] : v|[xi−1,xi] ∈ Pr, i = 1, . . . , Nx},

M0
x = {v ∈ Mx : v(a) = v(b) = 0},

My = {v ∈ C1[c, d] : v|[yj−1,yj ] ∈ Pr, j = 1, . . . , Ny},
M0

y = {v ∈ My : v(c) = v(d) = 0}.


