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STABILIZED INVARIANT ENERGY QUADRATIZATION (S-IEQ)

METHOD FOR THE MOLECULAR BEAM EPITAXIAL MODEL

WITHOUT SLOPE SECTION

HUI ZHANG, XIAOFENG YANG, AND JUN ZHANG

Abstract. The design of numerical approaches for the molecular beam epitaxy models has

always been a hot issue in numerical analysis, in which one of the main challenges for algorithm
design is how to establish a high-order time-accurate numerical method with unconditional energy
stability. The numerical method developed in this paper is based on the “stabilized-Invariant
Energy Quadratization” (S-IEQ) approach. Its novelty is that by adding a very simple linear

stabilization term, the difficulty that the original energy potential for the no-slope selection case
is not bounded from below can be easily overcome. Then by using the standard format of the
IEQ method, we can easily obtain a linear, unconditionally energy stable, and second-order time

accurate scheme for solving the system. We further implement various numerical examples to
demonstrate the stability and accuracy of the proposed scheme.
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1. Introduction

Molecular Beam Epitaxy (MBE) model refers to a continuum model to describe
the growth of crystalline layer deposited on a substrate. By using a scalar variable
to represent the height of the crystalline layer, the model is derived by using the
gradient flow approach in L2 space. The postulated energy of the system is com-
posed of a linear entropy and a nonlinear potential where the nonlinear potential
can take two forms, one is the fourth-order Ginzburg-Landau double-well potential
and the model built on that is called the slope selection model, and the other is
the logarithmic potential and the model built on it is called the no-slope selection
model. Since the algorithm development for the double-well potential of the slope
selection model has been extensively studied, see [11,15,17,20,21,30], in this paper,
we consider the numerical approximations of the no-slope selection model, i.e., the
time marching scheme for the logarithmic potential. Formally, the governing sys-
tem of the MBE model with no-slope selection is not complicated where only two
terms (a linear term and a nonlinear term) are involved. However, it is still very
challenging to develop an effective numerical scheme due to the complexity of the
logarithmic format of the nonlinear term.

Here, we briefly introduce the available numerical schemes for the MBE no-slope
selection model here. According to the discretization method of the nonlinear po-
tential, the available approaches can be categorized to the following two types,
explicit type and semi-implicit type. The explicit type methods includes the oper-
ator splitting approach [10], explicit method [11], stabilized-explicit method [8,13],
convex-splitting method [17], and ETD approaches [3–5, 9], etc. The semi-implicit
approach includes the quadratization approach, including the Invariant Energy
Quadratization (IEQ) method [30] and its various version of Scalar Auxiliary Vari-
able (SAV) method [7], etc. It is worth noting that almost all available schemes are
linear and their implementation are very effective practically (e.g., most schemes
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only need to solve linear systems with variable coefficients or even constant coeffi-
cients at each time step). Among so many effective algorithms that can be used to
solve the MBE model, considering that the process of constructing and implement-
ing the quadratization type scheme is relatively simpler and easier, in this article
we use IEQ method to solve the model.

However, the choice of the IEQ method raises a direct open question. Although
the IEQ method developed in [30] enables one to construct linear, second-order, and
unconditionally energy stable schemes for a large class of gradient flows, it is prob-
lematic whether it is applicable for solving the MBE model without slope selection
since the nonlinear logarithmic potential is not obviously bounded from below. To
overcome it, in this paper, we modify the IEQ approach to the stabilized version
where we modify the total free energy by adding a gradient potential. With the
help of it, we can easily show that the boundedness (from below) can be naturally
satisfied, and the second-order time marching scheme can be obtained easily. Note
that the total free energy of the model has not changed, because while adding that
gradient term, we also subtract it and the subtracted item can be further bounded
by the higher-order linear potential. In this way, the bounded-from-below property
of the total free energy can still be strictly guaranteed. Moreover, the magnitude of
the stabilization term can be arbitrarily small as long as it is positive, which implies
that the splitting error caused by this term can actually be controlled within the
machine precision. We further prove the well-posedness of the developed scheme
and also show that the constructed scheme is unconditionally energy stable.

The structure of this article is as follows. In Section 2, the MBE model without
slope selection is briefly introduced. The numerical scheme is further constructed
in Section 3. The practical implementation process is also given in detail. The
unconditional energy stability is proved rigorously. In Section 4, we implement
the numerical simulations numerically to demonstrate the stability, accuracy of the
developed schemes. In Section 5, we give some concluding remarks.

2. MBE model with no slope selection

We first give a brief introduction on the MBE model with no slope selection. The
computed domain is set as Ω = [0, L]d, d = 2. Suppose ϕ(x) is a height function
and the total phenomenological free energy is postulated as [11]

(1) E(ϕ) =

∫
Ω

(
L(∆ϕ) + F (∇ϕ)

)
dx,

where the L(∆ϕ) = ϵ2

2 (∆ϕ)
2 is the linear entropy that represents the surface dif-

fusion effect, the coefficient ϵ is used to controls the diffusive strength, and F (ϕ)
is the nonlinear potential that represents a continuum description of the Ehrlich-
Schwoebel effect. For the no slope selection case, F (∇ϕ) reads as

(2) F (∇ϕ) = −1

2
ln(1 + |∇ϕ|2).

The evolution equation for the height function ϕ is derived by using the gradient
flow approach in the L2 space, that reads as

ϕt = −M
(
ϵ2∆2ϕ+ f(∇ϕ)

)
,(3)

where M is the mobility constant, and

f(∇ϕ) = ∇ ·
( ∇ϕ
1 + |∇ϕ|2

)
.(4)


