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AN EFFICIENT NONLINEAR SOLVER FOR STEADY MHD

BASED ON ALGEBRAIC SPLITTING

MENGYING XIAO

Abstract. We propose a new, efficient, nonlinear iteration for solving the steady incompressible
MHD equations. The method consists of a careful combination of an incremental Picard iteration,

Yosida splitting, and a grad-div stabilized finite element discretization. At each iteration, the Schur
complement remains the same, is SPD, and can be easily and effectively preconditioned with the
pressure mass matrix. Furthermore, this method decouples the block Schur complement into 2
simple Stokes Schur complement. We show that the iteration converges linearly to the discrete

MHD system solution, both analytically and numerically. Several numerical tests are given which
reveal very good convergence properties, and excellent results on a benchmark problem.
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1. Introduction

Magnetohydrodynamics (MHD) describes the flow of electronically conducting
fluids in a magnetic field, which arises in a wide range of applications such as
geophysics and astrophysics [2, 3, 5, 6, 10]. We herein develop an efficient nonlinear
iteration scheme to solve steady MHD in a convex domain Ω, which is given by

−ν∆u+ (u · ∇)u− s(B · ∇)B +∇p̄ =f,(1)

∇ · u =0,(2)

−νm∆B + (u · ∇)B − (B · ∇)u−∇λ =∇× g,(3)

∇ ·B =0,(4)

where u is the velocity of fluid, p̄ is a modified pressure, B is the magnetic field, λ is
a variable acting as a Lagrange multiplier corresponding to the solenoidal constraint
on the magnetic field, f is the body forcing, ∇× g is the forcing on the magnetic
field B, s is a coupling number, ν is the kinematic viscosity and νm is the magnetic
diffusivity. For simplicity we consider homogeneous Dirichlet boundary conditions
for both u and B and s = 1. With minor changes, our analysis will also hold for
inhomogeneous or periodic boundaries, as well as no slip velocity together with
B ·n = 0 and (∇×B)×n = 0 (in this case the Maxwell equation uses the curl curl
form of the dissipation term).

Although MHD couples the Navier-Stokes equations (NSE) for fluids to Maxwell’s
equations for electromagnetics, the linear systems that arise have similar structure
to those of the NSE, but in block form. Using Picard’s method to solve steady
MHD equations requires solving a linear saddle point system in each iteration. Dif-
ficulties arise when solving such saddle point systems, such as how to build an
efficient preconditioner for iterative linear solvers for large problems [4], and how
to derive a robust error estimator [11]. Several approximations are made to solving
this saddle point linear system. The linear algebra problem is actually worse in
the steady case, than the time dependent case, since one cannot take advantage of
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traditional splitting methods such as projection methods, or lag nonlinear terms in
a temporal discretization.

We herein propose a method to solve the nonlinear system (1)-(4) based on an
algebraic splitting method shown to work very well for a NSE system in [13], which
will require much easier linear system solvers than standard nonlinear solvers do.
It is based on a careful combination of an incremental Picard iteration, grad-div
stabilization, and algebraic splitting of Yosida-Type. A derivation of the method is
given below.

The standard Picard iteration scheme for (1)-(4) is given below: Guess u0, B0

and for k = 1, 2, . . . , and find uk, pk, Bk, λk satisfying

−γ∇(∇ · uk) + uk−1 · ∇uk −Bk−1 · ∇Bk +∇pk − ν∆uk =f,(5)

∇ · uk =0,(6)

−γm∇(∇ ·Bk) + uk−1 · ∇Bk −Bk−1 · ∇uk −∇λk − νm∆Bk =∇× g,(7)

∇ ·Bk =0.(8)

Although ∇(∇·uk) = ∇(∇·Bk) = 0 due to (6) and (8), when discretized with com-
mon finite element choices, such as Taylor-Hood, we only have weak enforcement
of (6) and (8). Thus parameters γ, γm penalize the divergence error of numerical
solutions. Notice these grad-div stabilization terms can make problem unstable if
gammas are too large as they are singular. In practice, γ, γm ∼ 1 are close to
optimal parameters. Adding increments −∇pk−1 and ∇λk−1 on both sides of (5)
and (7) respectively, gives an incremental Picard iteration:

−γ∇(∇ · uk) + uk−1 · ∇uk −Bk−1 · ∇Bk +∇δpk(9)

−ν∆uk =f −∇pk−1,

∇ · uk =0,(10)

−γm∇(∇ ·Bk) + uk−1 · ∇Bk −Bk−1 · ∇uk −∇δλk(11)

−νm∆Bk =∇× g +∇λk−1,

∇ ·Bk =0.(12)

which is equivalent to the usual Picard iteration (assuming p0 = λ0 = 0). After
applying a finite element discretization to (9)-(12), a block linear system arises at
each iteration in the form

A1 N1 CT
1 0

N1 A2 0 CT
1

C1 0 0 0
0 C1 0 0



ū
B̄
δ̄p

δ̄λ

 =


F̃1

F̃2

0
0

 ,(13)

where A1 and A2 consist of a stiffness matrix K, divergence matrix E and contribu-
tions of convection terms, N1 is the contribution of convection term from Maxwell’s
equation, and C1 is a rectangular matrix coming from (10) or (12). The bar nota-
tion denotes the coefficient vectors corresponding to the associated finite element
functions. This block linear system, just like for the NSE, takes the form of a saddle
point system (

A CT

C 0

)(
X̄
Ȳ

)
=

(
F̃
0

)
,(14)

if we set A =

(
A1 N1

N1 A2

)
, C =

(
C1 0
0 C1

)
, X̄ =

(
ū
B̄

)
, Ȳ =

(
δ̄p

δ̄λ

)
, F̃ =

(
F̃1

F̃2

)
.

Such a system is well known to be very difficult to solve. Direct solvers are not


