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EXTRAPOLATING THE ARNOLDI ALGORITHM TO IMPROVE

EIGENVECTOR CONVERGENCE

SARA POLLOCK AND L. RIDGWAY SCOTT

Abstract. We consider extrapolation of the Arnoldi algorithm to accelerate computation of
the dominant eigenvalue/eigenvector pair. The basic algorithm uses sequences of Krylov vectors
to form a small eigenproblem which is solved exactly. The two dominant eigenvectors output
from consecutive Arnoldi steps are then recombined to form an extrapolated iterate, and this

accelerated iterate is used to restart the next Arnoldi process. We present numerical results
testing the algorithm on a variety of cases and find on most examples it substantially improves
the performance of restarted Arnoldi. The extrapolation is a simple post-processing step which
has minimal computational cost.
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1. Introduction

There are many applications in which the smallest eigenvalues of large systems
must be computed, e.g., in stability analysis of numerical schemes [6] and in stability
analysis of partial differential equations [16]. The (inverse) power method is often
preferred due to its ease of implementation and the limited amount of storage
required. In many cases [16], all that is required to implement the inverse power
method is to solve the associated system of equations repeatedly. Thus it is easy
to modify a code for a solver to become a code for the inverse power method.

Extrapolation has been shown [11] to provide an effective way to improve the
power method. Here we consider a different approach in which the power method
is first generalized. We then examine extrapolation of the method.

One generalization of the power method is to use a small number k > 1 of
approximation vectors and to project the eigenproblem onto the corresponding
k-dimensional space. One then solves the projected k-dimensional eigenproblem
and extracts the eigenvector corresponding to the extreme eigenvalue as the next
iterate. This can lead to faster convergence with a controlled increase in storage. A
natural set of vectors to use is a Krylov basis, and we dub this approach the k-step
Krylov method. We show that the popular LOBPCG method is of this form. There
could of course be other ways of generating appropriate vectors at each step, e.g.,
a random process.

We show that the Arnoldi algorithm provides a very stable implementation of
the k-step Krylov method. We further demonstrate how a simple extrapolation
technique, which takes a combination of the two latest Arnoldi outputs as the next
approximation, can be used to further enhance the rate of convergence. Since the
basic k-step method is Arnoldi, it is remarkable that this algorithm can be improved
by extrapolation.
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2. k-step Krylov methods

We can define general k-step Krylov methods as follows. We start with a vector
y1 and define yj+1 = Ayj , for j = 1, . . . , k−1. We seek to find coefficients a1, . . . , ak
such that

(1) A
∑
j

ajyj = λ
∑
j

ajyj .

Taking dot products, we see that this is equivalent to

Ka = λMa,

where
Kij = yt

iAyj , Mij = yt
iyj .

Thus we can determine a by solving the eigenproblem

(2) M−1Ka = λa.

Due to the close connection with Ritz methods, a is called the Ritz vector and λ is
the Ritz value. A great deal is known about how these approximate eigenvectors
and eigenvalues for A as k increases [14].

We define the output of the k-step method as λ1, . . . λm (m < k) and

y =

k∑
i=1

aiyi,

where a is the eigenvector corresponding to the extreme eigenvalue λ1 for (2), and
λ2, . . . λm are the remaining eigenvalues in descending order.

The eigenproblem (2) can be solved analytically for k ≤ 4. In [13], the case k = 2
is described in detail.

2.1. Orthogonalization of Krylov vectors. Unfortunately, the naive approach
(2) to the k-step method fails for larger k, due to ill conditioning, as described in
[13]. Thus we consider orthogonalization of the Krylov vectors.

Now we modify the steps leading to (2). We start with a vector ŷ1 and de-
fine Krylov vectors ŷj+1 = Aŷj , for j = 1, . . . , k. Then we orthogonalize to get
y1, . . . ,yk by the modified Gram–Schmidt algorithm [2, 12]. We provide the details
in [13]. In this setting, the matrix M is the identity.

The use of orthogonal Krylov vectors allows extension to more steps k, but for
slightly larger k the algorithm still fails due to the increasing condition number of
K, as indicated in [13].

2.2. Arnoldi algorithm. The Arnoldi algorithm makes a small change in the
order of orthogonalization and multiplication by the matrix A. Instead of first cre-
ating the Krylov vectors all at once, we multiply by A only after orthogonalization.
Thus y1 = ∥ŷ1∥−1ŷ1. Then for n = 1, 2, . . . , k − 1, define

ỹn = Ayn −
n∑

j=1

hj,nyj , hj,n = y t
j Ayn , j = 1, . . . n,

hn+1,n = ∥ỹn∥, yn+1 = h−1
n+1,nỹn.

(3)

For n = k, we compute hj,k = y t
j Ayk for j = 1, . . . k, but we do not perform the

orthogonalization steps in the first line of (3) for n = k.
One can show by induction that the vectors yj are orthogonal, so that, in exact

arithmetic, H = K. But this subtle change makes the algorithm far more robust, as
shown in Figure 1(a). The k-step algorithm approximates accurately many of the


