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STABILITY ANALYSIS AND ERROR ESTIMATES OF LOCAL

DISCONTINUOUS GALERKIN METHOD FOR

CONVECTION-DIFFUSION EQUATIONS ON OVERLAPPING

MESH WITH NON-PERIODIC BOUNDARY CONDITIONS
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Abstract. A new local discontinuous Galerkin (LDG) method for convection-diffusion equations

on overlapping meshes with periodic boundary conditions was introduced in [14]. With the new
method, the primary variable u and the auxiliary variable p = ux are solved on different meshes. In
this paper, we will extend the idea to convection-diffusion equations with non-periodic boundary
conditions, i.e. Neumann and Dirichlet boundary conditions. The main difference is to adjust

the boundary cells. Moreover, we study the stability and suboptimal error estimates. Finally,
numerical experiments are given to verify the theoretical findings.
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1. Introduction

In this paper, we apply the local discontinuous Galerkin (LDG) method on over-
lapping meshes provided in [14] for the convection-diffusion equations

(1) ut + f(u)x = (a2(u)ux)x, x ∈ [0, 1], t > 0,

as well as its two dimensional version. We assume that a(u) ≥ 0.
In 1973, Reed and Hill first introduced the discontinuous Galerkin (DG) method

in the framework of neutron linear transportation [23]. This method gained even
greater popularity for good stability, high-order accuracy, and flexibility on h-p
adaptivity and complex geometry. Subsequently, Cockburn et. al. proposed in
a series of papers [6, 7, 8, 9] the Runge-Kutta discontinuous Galerkin (RKDG)
methods for hyperbolic conservation laws. Later, in [10], Cockburn and Shu intro-
duced the LDG method for convection-diffusion equations motivated by successfully
solving compressible Navier-Stokes equations in [1].

As in traditional LDG method, we introduce an auxiliary variable p = A(u)x
with A(u) =

∫ u
a(s) ds to represent the derivative of the primary variable u, and

rewrite (1) into the following system of first order equations{
ut + f(u)x = (a(u)p)x,

p = A(u)x.
(2)

Then we can solve u and p on the same mesh by using the DG method. The
LDG method shares all the nice features of the DG methods for hyperbolic equa-
tions, and it becomes one of the most popular numerical methods for solving
convection-diffusion equations. However, due to the discontinuity nature of the
numerical approximations, it may not be easy to construct and analyze the scheme
for some specials convection-diffusion equations. For example, the convection terms
of chemotaxis model [19, 22] and miscible displacements in porous media [11, 12] are
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products of one of the primary variable and the derivative of another one. There-
fore, the upwind flux for the convection term may not be easy to obtain. One of
the alternatives is to use other methods, such as mixed finite element method, to
obtain continuous approximations of the derivatives, see e.g. [18]. A more general
idea is to use the Lax-Friedrichs flux, see e.g. [16, 20, 28] for the error estimates
for miscible displacements and chemotaxis models. The main technique is to use
the diffusion term to control the convection term [24, 25, 26]. Moreover, to make
the numerical solutions to be physically relevant, we have to add a sufficiently large
penalty which depends on the numerical approximations of the derivatives of the
primary variables [17, 20, 2]. Another possible way is to construct flux-free schemes,
such as the central discontinuous Galerkin (CDG) method [21] and the staggered
discontinuous Galerkin (SDG) method [4]. However, the CDG scheme doubles the
computational cost as we have to solve each equation in (2) on both the primary
and dual meshes twice and it is not easy to apply limiters in SDG method because
it requires partial continuity of the numerical approximations.

Recently, one of the authors in this paper introduced a new LDG method on over-
lapping meshes [14] by solving u and p on primitive and dual meshes, respectively,
hence p is continuous across the interfaces on the primitive mesh. The scheme is
proved to be stable under the L2-norm and can be used to construct third-order
maximum-principle-preserving schemes [13]. However, in some special cases, it may
not enjoy the optimal convergence rates. The suboptimal convergence rate can be
observed numerically if all the following three conditions are satisfied: (1) Odd or-
der polynomials are used in the finite element space, (2) The dual mesh generated
by connecting the midpoints of the primitive mesh, (3) No penalty is added to the
numerical scheme. If one of the conditions is violated, the convergence rate will
turn out to be optimal. Later, in [3], we used Fourier analysis to explicitly write out
the error between the numerical and exact solutions and verify the optimal conver-
gence rate for linear parabolic equations with periodic boundary conditions in one
space dimension. Moreover, we also found out some superconvergence points that
may depend on the perturbation constant in the construction of the dual mesh.

Both works given above are for problems with periodic boundary conditions. To
implement the scheme, we need to combine the two boundary cells at the bound-
aries into one and find a polynomial approximation on the new cell. It is impossible
to do that for general Dirichlet and Neumann boundary conditions, which are more
realistic in practice, see e.g. [11, 12, 20]. In this paper, we will discuss the sta-
bility and error estimates of the new LDG methods for problems with Neumann
and Dirichlet boundary conditions. The difficulty for the Neumann and Dirichlet
boundary conditions is how to deal with the boundary cells of the dual mesh since
two boundary cells cannot be combined. One possible way is to leave two boundary
cells after generating the dual mesh, and introduce suitable numerical fluxes are
the boundaries. For simplicity of presentation, we only demonstrate the proof for
nonlinear parabolic equations {

ut = (a(u)p)x,

p = A(u)x,
(3)

where A(u) =

∫ u

a(t) dt. The extension to general nonlinear convection-diffusion

equations can be obtained following [14], hence we only demonstrate the results
without proof.


