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A FULLY DISCRETE, DECOUPLED SCHEME WITH

DIFFERENT TIME STEPS FOR APPROXIMATING NEMATIC

LIQUID CRYSTAL FLOW

TING LI, PENGZHAN HUANG*, AND YINNIAN HE

Abstract. This paper designs a decoupled scheme for approximating nematic liquid crystal flow

based on a fully discrete mixed finite element method, which allows different time steps for different

physical fields. Besides, error estimates for velocity and macroscopic molecular orientation of

the nematic liquid crystal flow are shown. Finally, numerical tests are provided to demonstrate

efficiency of the scheme. It is found the presented scheme can save lots of computational time

compared with common decoupled scheme.
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1. Introduction

Liquid crystal is usually known as the fourth state of matter and is different to
gas, liquid and solid. The simplest liquid crystal phase is the nematic liquid crystal.
It is consisted of elongated rod-like molecules with similar size. The centers of
mass of these molecules have no positional order, but tend to align along preferred
direction. In recent decades, many studies are dealing with the nematic liquid
crystal, due to the importance of related scientific and, engineering applications [2].

Ericksen-Leslie model, built by Ericksen [9, 10] and Leslie [18], can simulate
the hydrodynamics of the nematic liquid crystal flow, and it is the macroscopic
continuum description of the time evolution of both flow velocity and microscop-
ic orientation. Further, a simplified Ericksen-Leslie model is derived by Lin [22]
initially and its governing equations are written as follows [22, 1]:

ut − ν∆u+ (u · ∇)u+∇p+ λ∇ · (∇d⊙∇d) = f,

dt − γ∆d+ (u · ∇)d = γ|∇d|2d,
∇ · u = 0, |d| = 1,

(1)

for (x, t) ∈ QT , whereQT = Ω×(0, T ) with a fixed T ∈ (0,∞). Here, u(x, t) : QT →
R2 and p(x, t) : QT → R denote the velocity field and the pressure of the flow, re-
spectively. Besides, d(x, t) : QT → S is the director, which represents the molecular
orientation field of the nematic liquid crystal material and describes the average
molecular alignment, where S ⊂ R2 is a unit circle. In addition, f(x, t) : QT → R2

represents a body force on the flow. Three parameters ν, λ and γ denote the
kinematic viscosity, the competition between kinetic and potential energy, and the
microscopic elastic relaxation time for the molecular orientation field, respectively.
Hereafter, |∇d| or |d| denotes the Euclidean norm of ∇d or d, and ∇d ⊙ ∇d is

a 2 × 2 matrix whose (i, j)-the entry is written by (
∑2

k=1
∂dk

∂xi

∂dk

∂xj
)i,j . As in [1], in
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this paper the system (1) is considered in conjunction with the following initial and
boundary conditions:

u(x, 0) = u0(x), d(x, 0) = d0(x), ∀x ∈ Ω,

u|ST
= 0, ∂nd|ST

= 0,
(2)

with ∇ · u0 = 0 and |d0| = 1, where ST = ∂Ω × (0, T ) and n is the outer unit
normal of ∂Ω.

Although this simplified Ericksen-Leslie model neglects the Leslie stress in the
Ericksen-Leslie model, it still retains some essential difficulties of the Ericksen-Leslie
model and keeps the core of the mathematical structure, such as strong nonlineari-
ties and constraints, as well as the physical structure, such as the anisotropic effect
of the elasticity on the velocity field. Thus, the system (1)-(2) can be regarded as a
nice initial step towards the theoretical and numerical analysis of the Ericksen-Leslie
model.

Because the governing equations (1)-(2) of the simplified Ericksen-Leslie model
include not only the incompressibility, the strong nonlinearity and the physical and
nonconvex side constraint |d| = 1 but also the coupling between the harmonic
map flow and the fluid equations of motion, which make it not easy to solve these
equations effectively. Therefore, much effort has been throwing to the development
of some efficient numerical methods for investigating this system [13, 6, 7, 27, 19, 16]
and the references therein. Besides, Du et al. [8] have studied a Fourier-spectral
method for the simplified Ericksen-Leslie system and established spectral accuracy.
In [12], a linear fully discrete mixed scheme has been considered, using finite element
method in space and a semi-implicit Euler scheme in time. In addition, Becker et al.
[3] have constructed a fully discrete scheme, which uses low order finite elements and
enjoys a discrete energy law. Based on explicit treatment of the unitary constraint
for the director field, a fully splitting and decoupled in time linear algorithm has
been designed [14]. Recently, An and Su [1] have shown optimal error estimates for
an linearized semi-implicit Euler finite element scheme for the considered system.

In this paper, we design a fully discrete, decoupled finite element scheme for
approximating the simplified Ericksen-Lesliel system (1)-(2). Since the system has
many physical fields and is a multiphysics problem, we adopt different time step
sizes for different physical fields. In fact, Ge and Ma [11] have proposed a multi-
rate iterative scheme based on multiphysics discontinuous Galerkin method for a
poroelasticity model, which is a fluid-solid interaction system at pore scale. Shi et
al. [26, 25] have designed a multistep technique to overcome the instability mainly
caused by the explicit treatment of the convection system and to enlarge the sta-
bility region such that the resulting scheme behaved like an unconditionally stable
scheme. Besides, the differing time steps methods have been applied to the Stokes-
Darcy model [24], the Navier-Stokes/Darcy model [17] and the Darcy-Brinkman
problem [21].

2. A decoupled scheme with different time steps for the nematic liquid

crystal flow

In this section, we describe some necessary definitions and inequalities, which
will be frequently applied to following sections.

Firstly, we introduce standard notations for Lebesgue space Lp(Ω) and Sobolve
space Wm,p(Ω), 1 ≤ p ≤ ∞, m ∈ N+. Then, their norms are denoted by ∥ · ∥Lp(Ω)

and ∥ · ∥Wm,p(Ω), respectively. In particular, Hm(Ω) is used to represent the space

Wm,2(Ω) and ∥ · ∥m denotes the norm in Hm(Ω). Besides, L2(Ω) norm and its


