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ADAPTIVE MULTIGRID METHOD FOR EIGENVALUE

PROBLEM

FEI XU, QIUMEI HUANG, SHUANGSHUANG CHEN AND HONGKUN MA∗

Abstract. In this paper, we propose a type of adaptive multigrid method for eigenvalue prob-
lem based on the multilevel correction method and adaptive multigrid method. Different from

the standard adaptive finite element method applied to eigenvalue problem, with our method
we only need to solve a linear boundary value problem on each adaptive space and then correct
the approximate solution by solving a low dimensional eigenvalue problem. Further, the involved

boundary value problems are solved by some adaptive multigrid iteration steps. The proposed
adaptive algorithm can reach the same accuracy as the standard adaptive finite element method
for eigenvalue problem but evidently reduces the computational work. In addition, the corre-
sponding convergence and optimal complexity analysis are derived theoretically and numerically,

respectively.
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1. Introduction

How to solve large-scale eigenvalue problems is a very significant problem in
modern scientific and engineering calculations. Many physical models and engi-
neering models ultimately boil down to eigenvalue problems, such as the structural
vibration analysis in buildings design, stability analysis in control systems, inher-
ent frequency analysis of aircraft, etc. In recent years, the first-principles electronic
structure calculations have pushed into the spotlight, and its key point is right to
solve a class of nonlinear eigenvalue models. Therefore, it is necessary to make an
indepth study of eigenvalue problem for its important theoretical significance and
wide application value.

Among different numerical methods for eigenvalue problems, the adaptive finite
element method (AFEM) is an efficient approach in generating optimal triangula-
tion. AFEM was proposed by Babuška and his cooperators in [4, 5]. Up to now,
the corresponding theoretical analysis of AFEM is well-developed. The conver-
gence and optimal complexity analysis for boundary value problem can be found in
[10, 16, 22, 23, 34, 33, 35, 37]. For eigenvalue problems, we can also find some similar
results in [15, 17, 18, 19, 27, 30]. To further improve the efficiency of adaptive finite
element method, the multilevel technique was absorbed to generate the adaptive
multigrid method. Actually, it is worthing noting that adaptive mesh refinement
technique was confirmed fully compatible with the multilevel mesh structure. Based
on this idea, Brandt [6, 8] introduced the multilevel adaptive technique (MLAT),
and McCormick [31] developed the fast adaptive composite grid method (FAC). For
more results about the adaptive multigrid method, please refer to [13, 21, 32, 38, 39]
and the references cited therein.

Though the optimal triangulations can be derived by standard AFEM, we have
to solve an eigenvalue problem on each adaptive space, which is time-consuming
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and very tedious with the growth of degree of freedoms. The purpose of this
paper is to propose a new type of adaptive multigrid method for solving eigenvalue
problem based on adaptive finite element method, adaptive multigrid method and
the recent work on the multilevel correction method [12, 24, 26, 28, 29, 40, 41]. In
addition, we also analyze the corresponding convergence and optimal complexity
property. In our presented adaptive multigrid method, the eigenvalue problem can
be transformed into a series of linear boundary value problems on the fine grids and
some eigenvalue problems on the coarsest grid. The dimension of the small-scale
eigenvalue problem will be fixed during the adaptive refinement, thus the solving
time can be ignored if the size of mesh becomes increasingly smaller after some
refinement steps. Further, for the involved linear boundary value problems, we
only need to proceed some multigrid iteration steps on the newly refined elements
and their neighbors. For more details, please refer to [6, 21, 38, 39] and references
cited therein. In this paper, we will adopt the techniques in [10, 15, 22] to prove the
convergence and optimal complexity of the proposed adaptive multigrid method.

The rest of the paper is arranged as follows. Section 2 describes some basic
notations and the standard AFEM for the second order elliptic boundary value
problem. In Section 3, we introduce the adaptive multigrid method for eigenvalue
problems. The corresponding convergence and complexity analysis will be given in
Section 4. In Section 5, some numerical experiments are presented to validate the
efficiency and the theoretical analysis. Section 6 concludes.

2. Preliminaries of standard adaptive finite element method for bound-
ary value problem

This section is devoted to introducing some basic notation and some useful results
of AFEM for second order linear elliptic boundary value problems. We shall use
the standard notation for Sobolev spaces W s,p(Ω) with associated norms ∥ · ∥s,p,Ω
and seminorms | · |s,p,Ω (see, e.g., [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω),
H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace and
∥ · ∥s,Ω = ∥ · ∥s,2,Ω. For simplicity, we set V = H1

0 (Ω) in the rest of this paper.
Here, we consider the following homogeneous boundary value problem:

(1)

{
Lu := −∇ · (A∇u) + ϕu = f in Ω,

u = 0 on ∂Ω,

where A = (ai,j)d×d is a symmetric positive definite matrix with suitable regularity
and ϕ is a nonnegative function.

In order to use the finite element method, we first introduce the weak form for
(1) as follows: Find u ∈ V such that

a(u, v) = (f, v), ∀v ∈ V,(2)

where the bilinear form a(·, ·) is defined by

a(u, v) =

∫
Ω

(A∇u · ∇v + ϕuv)dΩ.(3)

Obviously, the bilinear form a(·, ·) is bounded and coercive over V . Thus, we can

define the energy norm ∥ · ∥a,Ω by ∥w∥a,Ω =
√

a(w,w).
Now, we introduce the standard finite element method for linear boundary value

problem (2). Firstly, we generate a shape regular decomposition of the computing
domain Ω ⊂ Rd (d = 2, 3) into triangles or rectangles for d = 2, tetrahedrons or
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