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LOW REGULARITY PRIMAL-DUAL WEAK GALERKIN FINITE

ELEMENT METHODS FOR ILL-POSED ELLIPTIC CAUCHY

PROBLEMS

CHUNMEI WANG

Abstract. A new primal-dual weak Galerkin (PDWG) finite element method is introduced and

analyzed for the ill-posed elliptic Cauchy problems with ultra-low regularity assumptions on the
exact solution. The Euler-Lagrange formulation resulting from the PDWG scheme yields a system
of equations involving both the primal equation and the adjoint (dual) equation. The optimal
order error estimate for the primal variable in a low regularity assumption is established. A series

of numerical experiments are illustrated to validate effectiveness of the developed theory.
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1. Introduction

In this paper we consider the ill-posed elliptic Cauchy model problem: Find an
unknown function u satisfying

−∇ · (a∇u) =f, in Ω,

u =g1, on ΓD,

a∇u · n =g2, on ΓN ,

(1)

where Ω ⊂ Rd(d = 2, 3) is an open bounded and connected domain with Lipschitz
continuous boundary ∂Ω, ΓD and ΓN are two segments of the domain boundary, f ∈
L2(Ω), the Cauchy data g1 ∈ H

1
2 (ΓD) and g2 ∈ (H

1
2
00(ΓN ))′, the coefficient tensor

a(x) is symmetric, bounded, and uniformly positive definite in the domain Ω, and
n is the unit outward normal vector to ΓN . The elliptic Cauchy problem is to solve
partial differential equations (PDEs) in a domain where over-specified boundary
conditions are given on parts of the domain boundary. The elliptic Cauchy problem
is also to solve a data completion problem with missing boundary data on the
remaining parts of the domain boundary.

The elliptic Cauchy problem arises in science and engineering, e.g., vibration,
wave propagation, cardiology, electromagnetic scattering, geophysics, nondestruc-
tive testing and steady-state inverse heat conduction. In particular, the Cauchy
problem for second order elliptic equations plays an important role in the in-
verse boundary value problems modeled by elliptic PDEs. Readers are referred
to [4, 28, 33, 40, 1, 9, 10, 16, 17, 46, 19, 53, 7, 20, 21] and the references cited
therein for details of the elliptic Cauchy problems.

There has been a long history tracing back to Hadamard [25, 43, 27, 26, 24] for
the study of the elliptic Cauchy problem (1). When it comes to the case of ΓD = ΓN ,
Hadamard demonstrated the ill-posedness of the problem (1) by constructing an
example where the solution does not depend continuously on the Cauchy data.
Hadamard and others [2, 29, 30] found that a small perturbation in the data might
result in an enormous error in the numerical solution for elliptic Cauchy problem.
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The Schwartz reflection principle [23] indicates that in most cases the existence of
solutions for the model problem (1) can not be guaranteed for any given Cauchy
data g1 and g2. However, [3] showed that the elliptic Cauchy problem (1) has a
solution for any given Cauchy data g1 × g2 ∈ M where M is a dense subset of

H
1
2 (ΓD) × [H

1
2
00(ΓN )]′. It is well-known that the solution of the elliptic Cauchy

problem (1) (if it exists) must be unique, provided that ΓD ∩ ΓN is a nontrivial
portion of the domain boundary. The Cauchy data is thus assumed to be compatible
such that the solution exists. Throughout this paper, we assume that ΓD ∩ΓN is a
nontrivial portion of the domain boundary so that the solution (if it exists) of the
elliptic Cauchy problem (1) is unique.

In the literature, there are two main numerical strategies developed for the el-
liptic Cauchy problem: (1) Tikhonov regularization is applied to the problem with
missing boundary data to determine the solution; (2) A sequence of well-posed
problems in the same equation is iteratively employed to approximate the ill-posed
problem. [34] developed the numerical method for the elliptic Cauchy problem
based on the tools of boundary integral equations, single-layer potential function
and jump relations. [22] introduced an optimization approach based on least squares
and Tikhonov regularization techniques. The finite element method based on an
optimal control characterization of the Cauchy problem was analyzed in [14]. The
stabilized finite element method [12, 11] based on a general framework involving
both the original equation and its adjoint equation is applicable to a wide class
of ill-posed problems where only weak continuity is necessary. More numerical
methods were proposed and analyzed for the elliptic Cauchy problem including
the conjugate gradient boundary element method, the boundary knot method, the
alternating iterative boundary element method, the moment method, the bound-
ary particle method, the method of level set type, and the method of fundamental
solutions [35, 40, 54, 15, 41, 31, 32, 42, 53]. Other theoretical and applied work
have also been developed such as regularization methods [45, 18], Steklov-Poincaré
theory [6, 44, 5], minimal error methods [38, 39] and quasi-reversibility methods
[8].

This paper is devoted to the development of a new primal-dual weak Galerkin
finite element method for the elliptic Cauchy model problem (1). The PDWG
framework provides mechanisms to enhance the stability of a numerical scheme by
combining solutions of the primal and the dual (adjoint) equation. PDWG methods
have been successfully applied to solve the second order elliptic equation in non-
divergence form [48], the elliptic Cauchy problem [47, 49], the Fokker-Planck type
equation [50], the convection diffusion equation [13, 55], and the transport equation
[51, 36]. The PDWG method has the following advantages over other existing
schemes: (1) it offers a symmetric and well-posed problem for the ill-posed elliptic
Cauchy problem; (2) it is consistent in the sense that the system is satisfied by the
exact solution (if it exists); (3) it is applicable to a wide class of PDE problems for
which no traditional variational formulation is available; and (4) it admits general
finite element partitions consisting of arbitrary polygons or polyhedra. The main
contribution of this paper lies in two aspects: (1) the development of a new PDWG
scheme that admits boundary data with low regularity due to noise or uncertainties;
and (2) the establishment of a mathematical convergence theory with optimal order
error estimates under low regularity assumptions for the exact solution.

Throughout the paper, we use the standard notations for Sobolev spaces and
norms. For any open bounded domain D ⊂ Rd with Lipschitz continuous boundary,
denote by ∥ · ∥s,D, | · |s,D and (·, ·)s,D the norm, seminorm and the inner product


