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A SCALAR AUXILIARY VARIABLE (SAV) AND OPERATOR

SPLITTING COMPACT FINITE DIFFERENCE METHOD FOR

PERITECTIC PHASE FIELD MODEL

JIAJIE FEI, SHUSEN XIE, AND CHUNGUANG CHEN∗

Abstract. Peritectic crystallization is a process in which the solid phase precipitated in the
form of solid solution reacts with the liquid phase to form another solid phase. The process

can be described by a phase field model where two continuous phase variables, ϕ and ψ, are
introduced to distinguish the three different phases. We discretize the time variable with a scalar
auxiliary variable (SAV) method that can ensure the unconditional energy stability. Moreover,
the SAV method only requires solving a linear system at each time step and therefore reduces

the computational complexity. The space variables in a two-dimensional region are discretized by
an operator splitting method equipped with a high order compact finite difference formulation.
This approach is effective and convenient since only a series one-dimensional problems need to be
solved at each step. We prove the unconditional energy stability theoretically and test the order

of convergence and energy stability through numerical experiments. Simulations of peritectic
solidification demonstrate the patterns formed during the process.
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1. Introduction

Peritectic crystallization occurs when the solution of alloy is cooled down to
critical temperature and one solid phase, denoted by α, precipitated in the form of
solid solution reacts with the liquid phase to form another solid phase, denoted by
β. This process is similar to eutectic crystallization where the two different solid
phases precipitated simultaneously from the solution. The mathematical modeling
of both processes has gradually matured with the application of phase field model.
In a typical phase field model, a variable, usually denoted by ϕ, takes two different
values in solid and liquid, e.g. +1 and −1, changes smoothly between the two
values in the region around the interface and diffuses with a limited width. Another
variable, ψ, is used to distinguish the α-solid and β-solid in the same way. The
discrete position of the interface can be defined as the set of all points where the
phase field takes a specific value, e.g. 0. In other words, the phase field model does
not track the location of the interface explicitly, unlike the sharp-interface approach
such as level-set method, hence is effective in simulations of complicated patterns
formed in alloy solidification.

Concerning the peritectic process, Trivedi [26] proposed a one-dimensional model
to explain the formation of peritectic banded structure in pure diffusion controlled
growth. This model is improved by P. Mazumder, R. Trivedi and A. Karma [20]
under the assumption of a planar solidification front and incorporation with a fully
two-dimensional convection flow field. A. Wheeler et al [29] proposed a phase
field model for eutectic solidification which is then developed for both eutectic and
peritectic phase transitions [21]. Based on [29], T. S. Lo, A. Karma and M. Plapp
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[19] developed a phase field model of the formation of microstructure mode during
directional solidification of amorphous unstable peritectic alloys. This model will
be discussed and solved numerically in the following sections.

As the evolution of phase field model is driven by energy dissipation, it is crucial
to imitate this physical law in numerical approximation. Numerical schemes that
satisfy discrete energy dissipation law are energy stable. X. Yang and D. Han [32]
developed a series of linear, unconditionally energy stable numerical schemes for
solving the phase field crystal model. The temporal discretizations are based on
the first order Euler method, the second order backward differentiation formulas
(BDF2) and the second order Crank-Nicolson method, respectively. K. Cheng, W.
Feng and C. Wang [4] proposed an energy stable numerical scheme for the Cahn-
Hilliard equation by the long stencil fourth order finite difference approximation.
In the temporal approximation, a second order BDF stencil is applied with a sec-
ond order extrapolation formula applied to the concave diffusion term, as well as a
second order artificial Douglas-Dupont regularization term, for the sake of energy
stability. K. Cheng, C. Wang and S. M. Wise [5] proposed an energy stable numer-
ical scheme for the strongly anisotropic Cahn-Hilliard model that is discretized in
space by the Fourier pseudospectral method. C. Elliott and A. Stuart [11] construct
an energy stable scheme with the convex splitting method that was applied to solve
Cahn-Hilliard equation by D. Eyre [12]. W. Chen et al [3] combined the convex
splitting method with a variable step BDF-2 approach and mixed finite element
method to approximate the Cahn-Hilliard equation and obtained second order rate
of convergence. Although the convex splitting method is unconditionally energy
stable, a nonlinear system has to be solved at every time level. J. Zhu et al [37]
proposed an efficient numerical method for the phase field model that maintains the
energy stability by adding an artificial stabilization term. However, this approach
is difficult to extend to high-order schemes.

F. Guilln-Gonzlez and G. Tierra [15, 2] proposed the invariant energy quadra-
tization (IEQ) method to solve the interface diffusion problem. The IEQ method
can be effectively extended to the higher-order schemes and only require solving
linear systems with variable coefficients at each time step [31]. The IEQ method is
then developed by J. Shen [23, 24] to scalar auxiliary variable (SAV) method and
is widely used in numerical approximations for phase field and related problems
[1, 6, 13, 34, 35, 28, 36]. In addition to maintaining unconditional energy stabil-
ity, only linear systems with constant coefficients need to be solved at each step.
And, unlike IEQ method, the SAV approach reduces the system to de-coupled Pois-
son type equations for multi-component models. In this paper, we apply the SAV
method for time discretization in the numerical approximations of the peritectic
phase transition.

To account for the two-dimensional space variable, we implement an operator
splitting approach equipped with a high order compact finite difference scheme
[14, 30]. The 2D Poisson problem is separated into two 1D equations that are solved
by fourth-order compact finite difference schemes. The operator splitting method
has been widely used to approximate high dimensional problems. C. Zhang et al [33]
proved the nonlinear stability and convergence of a second-order operator splitting
scheme applied to the “good” Boussinesq equation. Y. Cheng et al [7] proposed a
fast explicit operator splitting method for the epitaxial growth model with slope
selection. This approach is modified by X. Li, Z. Qiao and H. Zhang [16] with a
compact center-difference scheme. C. Liu, C. Wang and Y. Wang [17] suggested a


