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THE SCOTT-VOGELIUS METHOD FOR THE STOKES

PROBLEM ON ANISOTROPIC MESHES

KIERA KEAN, MICHAEL NEILAN, AND MICHAEL SCHNEIER

Abstract. This paper analyzes the Scott-Vogelius divergence-free element pair on anisotropic
meshes. We explore the behavior of the inf-sup stability constant with respect to the aspect ratio
on meshes generated with a standard barycenter mesh refinement strategy, as well as a newly
introduced incenter refinement strategy. Numerical experiments are presented which support the

theoretical results.
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1. Introduction

Let Ω ⊂ R2 be a regular open polygon with boundary Γ. We consider the Stokes
equation with the no-slip boundary condition:

−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ,

where u is the velocity, p is the pressure, f is a given body force, and ν is the
viscosity.

In this manuscript we study the stability of the divergence-free Scott-Vogelius
(SV) finite element pair on anisotropic meshes for the Stokes problem; the results
trivially extend to other divergence free equations, e.g., the incompressible Navier-
Stokes equations. Divergence-free methods and other pressure-robust schemes are
an extremely active field of research (cf. [25, 32]) ranging from a variety of finite
element pairs (e.g., [35, 9, 37, 17, 1, 15, 22, 19, 21]) to modifying the formulation
of the equations (e.g., [28, 14, 29, 30, 27, 36, 26]). Advantages of divergence-free
methods include exact enforcement of conservation laws, pressure robustness with
the velocity error being independent of the pressure error and viscosity term [25, 3],
and improved stability and accuracy of timestepping schemes [11, 18].

The Stokes equation has been studied on anisotropic meshes for a number of
different element pairs. In [8] it was shown that for the Crouzeix-Raviart element,
the inf-sup constant is independent of the aspect ratio on triangular and tetrahedral
meshes. A similar result was shown for the Bernardi-Raugel finite element pair in
two dimensions for classes of triangular and quadrilateral meshes in [7]. Recently,
in [10] it was shown for a specific class of anisotropic triangulation that the lowest
order Taylor-Hood element was uniformly inf-sup stable. A nonconforming pressure
robust method was studied in [6]. Stability and convergence on anisotropic meshes
for the Stokes equation has also been studied extensively for the hp-finite element
method [4, 33, 34].

Up to this point there have been no theoretical results for H1 conforming diver-
gence free finite elements on anisotropic meshes. The low-order SV element pair is
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somewhat unique in that it is not inf-sup stable on general meshes, but requires spe-
cial meshes e.g., the barycenter refinement (or Clough-Tocher refinement) which is
obtained by connecting the vertices of each triangle on a given mesh to its barycen-
ter. As pointed out in [24, p.12] this gives rise to meshes with possibly very small
and large angles. The impact of these angles on the inf-sup constant was stated as
an open problem in [24].

In this work we show barycenter refinement on anisotropic meshes will necessarily
lead to large angles and propose an alternative mesh refinement strategy based on
the incenter of each triangle. This incenter refinement strategy produces a mesh
that avoids large angles and allows a smaller increase in aspect ratio on refinement.
We prove there is a linear relationship between the inf-sup constant and the inverse
of the aspect ratio for both the barycenter and incenter refined mesh; numerical
experiments show that these results are sharp. Surprisingly, numerical tests indicate
that there is not a significant difference, in terms of accuracy, between the incenter
and barycenter refinement.

The rest of this manuscript is organized as follows: In Section 2 we introduce
notation and give some preliminary results that will be used for the inf-sup stability
estimates. We also prove that the incenter refined mesh has superior aspect ratios
and angles compared to the barycenter refined mesh. In Section 3 we prove that
the inf-sup constant scales linearly with the inverse of the aspect ratio for both
barycenter and incenter refinement. In Section 4, we verify numerically the geo-
metric results proven in Section 2 and stability results proven in Section 3. We also
demonstrate that there does not appear to be an appreciable difference in terms
of accuracy for the incenter versus barycenter refinement. Finally, the appendix
contains proofs of some technical lemmas.

2. Preliminaries

Let Th denote a conforming simplicial triangulation of Ω ⊂ R2. We denote the
vertices and edges of T as {zi}3i=1 and {ei}3i=1 respectively, labeled such that zi is
opposite of ei. Set hi = |ei| and without loss of generality, we assume h1 ≤ h2 ≤ h3.
We denote by ρT the diameter of the incircle of T and set hT = h3. Let αi be the
angle of T at vertex zi, note that α1 ≤ α2 ≤ α3.

Let z0 ∈ T be an interior point of T , and set T ct = {K1,K2,K3} to be the local
(Clough-Tocher) triangulation of T , obtained by connecting the vertices of T to z0.
The three triangles {Ki}3i=1 are labeled such that ∂Ki ∩ ∂T = ei. Let aT be the
altitude of T with respect to edge e3, and let ki be the altitude of Ki with respect
to ei (cf. Figure 1).

2.1. Geometric results and dependence of split point. We examine the de-
pendencies and properties of the local triangulation of T on the choice of split point
z0. In particular, we consider geometric properties of the triangulations obtained
by connecting vertices of T to the barycenter and the incenter of T . First, we
require a few definitions.

Definition 2.1. The barycenter of T is given by

zbary =
1

3
(z1 + z2 + z3).

The incenter of T is given by

zinc =
1

|∂T |
(h1z1 + h2z2 + h3z3).


