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REDUCED APPROACH FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS

LIUHONG CHEN, MEIXIN XIONG, AND JU MING∗

Abstract. In this paper, we develop and analyze the reduced approach for solving optimal
control problems constrained by stochastic partial differential equations (SPDEs). Compared
to the classical approaches based on Monte Carlo method to the solution of stochastic optimal
control and optimization problems, e.g. Lagrange multiplier method, optimization methods based
on sensitivity equations or adjoint equations, our strategy can take best advantage of all sorts of
gradient descent algorithms used to deal with the unconstrained optimization problems but with
less computational cost. Specifically, we represent the sample solutions for the constrained SPDEs
or the state equations by their associated inverse-operators and plug them into the objective
functional to explicitly eliminate the constrains, the constrained optimal control problems are
then converted into the equivalent unconstrained ones, which implies the computational cost for
solving the adjoint equations of the derived Lagrange system is avoided and faster convergent rate
is expected. The stochastic Burgers’ equation with additive white noise is used to illustrate the
performance of our reduced approach. It no doubt has great potential application in stochastic
optimization problems.
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1. Introduction

Over the past decades, the computational community has shown a growing in-
terest in designing fast solution methods for optimal control problems constrained
by stochastic partial differential equations [21,23,24,46,53]. In this case, the Monte
Carlo methods are typically used in conjunction with the associated Galerkin finite
element approximation in space [10,22,28] to overcome the curse of dimensionality,
i.e., the situation in which the volume of the sample space increases exponentially
with the dimension, and obtain a reliable model. However, Monte Carlo simulation
typically requires a large number of sample solutions which may lead to formidable
computational cost. Therefore, effective algorithms are urgently desired to solve
these large-scale SPDE-constrained optimization problems in practice.

In this work, we consider a stochastic optimal control problem with tracking
type objective functional. The control goal is to determine a state variable u and
a deterministic control variable f to minimize

(1) J (u, f) := E

[
1

2

∫ T

0

∥u− U∥2L2(D) dt

]
+

β

2

∫ T

0

∥f∥2L2(D) dt

over a convex, bounded and polygonal spatial domain D ⊂ Rd (d = 2, 3), where
U is a given expected state and usually assumed to be deterministic, E denotes an
expected value, which is defined as the Lebesque integral in a complete probability
space (Ω,F ,P) described in section 2, β is a regularization parameter. u is the
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solution to a given SPDE, i.e., the state equation, which can be written in the
abstract form

(2) A(u, f) = 0,

where the operator A denotes a SPDE equipped with appropriate boundary and
initial conditions. (2) is usually used to model many physical, biological and eco-
nomic systems subject to the influence of randomness. In brief, the constrained
optimization problem we consider is then to find states u and controls f such that
the functional given in (1) is minimized subject to (2).

the minimization in (1) is constrained by (2).
In the study of turbulence phenomena, the Burgers’ equations can be viewed

as a simplified version of the Navier-Stokes equations. Analysis and numerical ap-
proximation of optimal control problems constrained by the Burgers’ equation are
thus important to a variety of more complicated optimization problems in fluid
dynamics. Control problems of the deterministic Burgers’ equation have been s-
tudied by many authors [7,25,27,30,42,48,50–52], and stochastic control problems
in [2, 12, 13, 29]. Here we focus on the case of stochastic Burgers’ equation with
additive white Gaussian noise.

To solve the large-scale optimization problems resulted from the Monte Car-
lo finite element (MC-FE) discretization, the classical approaches, e.g. Lagrange
multiplier method, optimization method based sensitivity equations or adjoint e-
quations [4, 17, 19, 40, 44] require the update of gradient over the samples, thus
demanding repeated and costly sample solutions of the state and adjoint equations
or sensitivity equations. In practice, they are typically not feasible for large-scale
optimization problems due to the unaffordable computational cost for the resulted
optimization system .

In this paper, we proposed the reduced approach to the stochastic optimal con-
trol problems. The reduced approach has been used to solve PDE-constrained
optimization in inverse problems [31], but there are very rare literatures exploring
the application of reduced approach to the stochastic optimization problems. For
the solvability of the optimal control problems, in literature, there are two different
strategies: Discretize-then-Optimize approach [32, 35, 39, 40] and Optimize-then-
Discretize approach [32, 36, 37, 41, 45, 46], the former approach is to discretize the
continuous problem and then accordingly derive for the optimality conditions, while
the latter one refers to optimality condition on the continuous level is formulated
first and then discretized. In our reduced approach, the Discretize-then-Optimize
strategy will be adopted. Specifically, we first discretize the objective functional
and the state equations, then we represent the sample solutions for the constrained
SPDEs by their associated inverse-operators G and plug them into the discrete ob-
jective functional to explicitly eliminate the constrains. This elimination leads to a
reduced objective functional Ĵ (G(f), f). The derived reduced system no longer has
to solve the adjoint equations, but directly obtains the gradient direction through
the chain rule. From the optimization point of view, the reduced approach can
make full use of various gradient descent algorithms for unconstrained optimization
problems and has low computational cost. Numerical experiments also show that
the new technique works well. Moreover, much of our results and computations can
be readily extended to to other optimization control problems. Figure 1 presents
the outline of our optimization algorithm.

The remainder of this paper is organized as follows. In Section 2.1, we give
a brief overview of some function spaces and notations. And the approximation
of Brownian white noise via piecewise constant functions are discussed in Section


