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Abstract. The midpoint method can be implemented as a sequence of Backward Euler and
Forward Euler solves with half time steps, allowing for improved performance of existing solvers
for PDEs. We highlight the advantages of this refactorization by considering some specifics of

implementation, conservation, error estimation, adaptivity, stability, and performance on several
test problems.
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1. Introduction

In the paper [9], the midpoint method was reformulated in an unusual way, and
numerous properties and advantages of the method and its implementation were
claimed. Here, we propose to highlight these features by considering some specifics
of implementation, conservation, error estimation, adaptivity, stability, and perfor-
mance on several test problems. The refactorized method was successfully applied
to partial differential equations and partitioning algorithms for fluid-structure in-
teraction and magnetohydrodynamics [6–8,52], and the idea was further developed
for multistep methods in [34,35].

2. The midpoint method and its “relatives”

We wish to estimate some quantity y(t), for which we have an initial value y0 at
time t0, and an evolution equation:

y′(t) = f(t, y(t)).

We shall produce estimates yn at a discrete sequence of times {tn}n≥0, using
stepsizes τn = tn+1 − tn. For convenience, we define tn+1/2 = tn + 1

2τn.
The (implicit) midpoint method for this problem can now be defined by:

yn+1 − yn
τn

=f(tn+1/2,
yn+1 + yn

2
)

=f(tn+1/2, yn +
1
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τn

yn+1 − yn
τn

).

Unless the right hand side function f(·, ·) is linear in y, each time we want to
take a step by applying this formula, we must solve an implicit nonlinear equation
for the unknown value yn+1. This implicit equation solution cost is part of the
overhead of the midpoint method. This cost varies depending on the nonlinearity
of f(·, ·) (associated with the problem), on the stepsize being used, (associated
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with the midpoint method), and on the robustness of the implicit equation solver
(depending on the underlying nonlinear solver employed).

It should be noted that a number of ODE solution methods are loosely termed
“midpoint methods”. To avoid confusion, it may be helpful to first name several of
these related methods and indicate their distinguishing features.

Title Formula for yn+1−yn

τn

Implicit midpoint: f(tn+1/2, 1/2 (yn + yn+1))
Explicit midpoint: f(tn+1/2, 1/2 (yn + yn + τnf(tn, yn)))
Implicit trapezoidal: 1/2 (f(tn, yn) + f(tn+1, yn+1))
Explicit trapezoidal: 1/2 (f(tn, yn) + f(tn+1, yn + τnf(tn, yn)))

Table 1. Four related one-step ODE methods.

It should be clear now that midpoint methods evaluate the right hand side at
the midpoint of the interval [tn, tn+1], while trapezoidal methods average values at
the endpoints. Implicit methods invoke the unknown solution yn+1, while explicit
methods use an estimate, such as the Euler approximation, instead.

If we move to partial differential equations, a very popular procedure is known
as the Crank-Nicolson 1 method, which involves both space and time discretization.
For time stepping, it is possible to implement the Crank-Nicolson method using any
one of the four above methods. Interestingly, in the original paper [12], it seems
that the implicit midpoint method is described.

From now on in this discussion, the expression “midpoint method” will be used
exclusively to refer to the implicit midpoint method.

3. Implementation

The midpoint method is a single step method; that is, the approximation of yn+1

at time tn+1 depends on the current values tn and yn, but not on any previous data.
For the moment, we will assume that an appropriate stepsize τn = tn+1 − tn has
been specified, so that we only need to address the implicit equation that defines
yn+1.

While adaptivity and variable step sizes are a vital feature of modern ODE
solvers, we will defer discussion of those matters (see e.g. [8, 9] and the references

1There is some confusion on what the Crank-Nicolson method actually is. For example, the
wikipedia page (November 14, 2021) claims that Crank-Nicolson is based on the trapezoidal

rule, and also Hundsdorfer and Verwer [28, page 125] state that “In the classic numerical PDE
literature, backward Euler and the trapezoidal rule are also known under the names Laasonen
scheme [31] and Crank-Nicolson [12] scheme, respectively”. The Crank-Nicolson appellative for
the trapezoidal rule is used in Ascher [2, page 41], Canuto, Hussaini, Quarteroni and Zhang’s

book [10, page 521], Hairer, Lubich and Wanner [23, page 28], Leveque [38, pages 121, 185],
Quarteroni, Sacco and Saleri [44, page 483], Quarteroni, Valli [45, page 149], Volker [29, page
394]. Heywood and Rannacher [25, page 355] and Gunzburger [22, page 131] call trapezoidal
rule as Crank-Nicolson, and then use the midpoint rule. In [33, page 162], Layton also refers to

the midpoint rule by the trapezoidal cognomen. On the other hand, Glowinski [21, page 267],
Hoffman and Johnson [27, page 216], Kalnay [30, page 83], Layton and Rebholz [36, page 137],
refer to the midpoint rule as the Crank-Nicolson method. Finally, it is worth mentioning that the

method which John Crank and Phyllis Nicolson literally used in their 1947 paper [12] on numerical
solutions of a nonlinear partial differential equation for heat flow is the midpoint rule.

https://en.wikipedia.org/wiki/Crank-Nicolson_method
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