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ON AN ADAPTIVE LDG FOR THE P-LAPLACE PROBLEM

DONGJIE LIU, LE ZHOU∗, AND XIAOPING ZHANG

Abstract. In this paper we consider the adaptive local discontinuous Galerkin(LDG) method
for the p-Laplace problem in polygonal regions in R2. We present new sharper a posteriori error

estimate for the LDG approximation of the p-Laplacian in the new framework. Several examples
are given to confirm the reliability of the estimate.
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1. Introduction

Let Ω be a bounded polyhedral domain in R2 with polygonal boundary Γ. We
consider the classical p-Laplace problem

(1)

{
−div(|∇u|p−2∇u) = f in Ω

u = gD = 0 on Γ
,

for 2 < p <∞ and given f ∈ Lq(Ω) (q conjugate of p). The p-Laplace problem (1)
admits a unique weak solution satisfying [7, 17]

(2) u = argminE(v) for v ∈W 1,p
0 (Ω) := {v ∈W 1,p(Ω), v|Γ = 0}.

where

(3) E(v) :=

∫
Ω

W (∇v)dx−
∫
Ω

fv dx.

The energy density function W : R2 → R reads W (a) := |a|p/p with the derivative
A(a) := |a|p−2a for all a ∈ R2.

The Euler-Lagrange equation of (2) consists in finding u ∈W 1,p
0 (Ω) with

(4)

∫
Ω

A(∇u) · ∇v dx−
∫
Ω

fv dx = 0 ∀ v ∈W 1,p
0 (Ω).

The embedding of W 1,p
0 (Ω) into W 1,2

0 is continuous when 2 < p < ∞ and Ω is
bounded domain (see [5]).

The p-Laplacian occurs in many mathematical models of physical processes such
as glaciology, nonlinear diffusion and filtration, power-law materials, and quasi-
Newtonian flows. Furthermore it is viewed as one of the typical examples of a large
class of difficult problems-degenerate nonlinear systems.

The numerical approximation for p-Laplace problem has been studied extensively
in the literature. The previous analysis of finite element method (FEM) for this kind
of problem was undertaken in [12], where the error estimates have been shown in
the W 1,p-norm. The results were further improved in [1, 13, 28]. Recently, sharper
error estimates were derived in [2, 4, 20, 23, 24, 26] by developing the quasi-norm
techniques.
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Over the last two decades, there has been an increasing interest in discontinuous
Galerkin (DG) methods for p-Laplace problem; see[6, 7, 17, 22]. Partically, Local
discontinuous Galerkin (LDG) method [11, 14, 15] for p-structure problem was
studied in [17, 22], where the quasi-norm interpolation estimates [18] were applied
in the frame of broken spaces.

This paper aims at deriving a new explicit and reliable a posteriori error estimate
for the LDG applied to the p-Laplacian. We generalize the Helmholtz decomposition
of the gradient of the error [3, 9], derive the reliable a posteriori error estimate in
the new defined distance, and the error of the energy can be presented at the same
time in an easy way.

The remaining parts of this paper are organized as follows. In Section 2 we
describe the LDG formulation and the equivalent minimization problem. In Sec-
tion 3, we introduce the distance ∥F (∇u)− F (∇v)∥22,p,Ω to quantify the quality of

approximations via F (a) := |a|p/2−1a,a ∈ R2. The a posteriori error estimators
based on new defined distance is presented in Section 4, Some numerical exper-
iments conclude the paper in Section 5 with empirical evidence of the expected
convergence.

Standard notation applies throughout this paper to Lebesgue and Sobolev spaces
Lp(Ω) and W 1,p(Ω). Denote ∥ · ∥Lp(Ω) := ∥ · ∥p,Ω, ∥ · ∥Lp(Γ) := ∥ · ∥p,Γ. Denote
the expression ”.” abbreviates an inequality up to some multiplicative generic
constant, i.e. A . B means A ≤ C B with some generic constant 0 ≤ C ≤ ∞,
which depends on the interior angles of the triangles but not their sizes. We write
A ∼ B if A . B and B . A.

2. Discontinuous finite element approximation

2.1. Discontinuous finite element space and Local L2-projection. In order
to obtain LDG formulation of (1), we introduce the gradient θ := ∇u and the flux
σ := A(θ) = |∇u|p−2∇u, then (1) can be reformulated as the follow problem: Find
(u,θ,σ) in appropriate space such that

(5)

{
θ = ∇u,σ = A(θ),−divσ = f in Ω
u = gD = 0 on Γ

.

Let Th =
∪
{T} be a shape-regular triangulation of Ω̄ such that Ω̄ =

∪
{T : T ∈

Th}, where straight triangle T has diameter hT and unit outward normal to ∂T
given by nT . h := max{hT : T ∈ Th}. We denote by Γh =

∪
{E ⊂ ∂T : T ∈ Th}

the union of all edges of Th and ΓI = Γh\Γ an union of all interior edges of Th. The
discontinuous finite element space of scalar function and vector function space are
defined by

Vh = {v ∈ Lp(Ω) : v|T ∈ P1(T ) ∀ T ∈ Th},
Σh = {θ ∈ [Lp(Ω)]2 : θ|T ∈ [P0(T )]

2 ∀ T ∈ Th}.
Pk(T ) denotes the polynomial of degree at most k on T . Similarly we have the
piecewise smooth function space on Th

W 1,p(Th) = {v ∈ Lp(Ω) : v|T ∈W 1,p(T ) ∀ T ∈ Th}.

Let T1 and T2 be two adjacent elements with a common edge E. Denote vi :=
v|∂Ti the trace of function v restricted to E in element Ti with ni := n|∂Ti on E
pointing exterior to Ti. Define jump and average of function v on E,

[[v]] = v1n1 + v2n2, {v} =
1

2
(v1 + v2), E ∈ ΓI .


