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ANALYSIS AND NUMERICAL RESULTS FOR BOUNDARY
OPTIMAL CONTROL PROBLEMS APPLIED TO TURBULENT

BUOYANT FLOWS

ANDREA CHIERICI, VALENTINA GIOVACCHINI AND SANDRO MANSERVISI

Abstract. In this work, we introduce the mathematical analysis of the optimal control for
the Navier-Stokes system coupled with the energy equation and a k-ω turbulence model. While
the optimal control of the Navier-Stokes system has been widely studied in past works, only a
few works are based on the analysis of the turbulent flows. Moreover, the optimal control of
turbulent buoyant flows are usually not taken into account due to the difficulties arising from the
analysis and the numerical implementation of the optimality system. We first prove the existence
of the solution of the boundary value problem associated with the studied system. Then we
use an optimization method that relies on the Lagrange multiplier formalism to obtain the first-
order necessary condition for optimality. We derive the optimality system and we solve it using a
gradient descent algorithm that allows uncoupling state, adjoint, and optimality conditions. Some
numerical results are then reported to validate the presented theoretical analysis.
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1. Introduction

In recent years, the optimal control of the energy and Navier-Stokes equations has
gained attention in a variety of engineering fields. The optimal design of natural or
mixed convection systems is crucial in many contexts, ranging from the thermal-
hydraulics of nuclear reactors to semiconductor production processes where buoy-
ancy forces control crystal growth.

In past years, considerable progress has been made in the mathematical analysis
of the optimal control of Navier-Stokes and energy equations. Several works have
been focused on the optimal control of the heat transfer in forced convection flows,
where the coupling between the Navier-Stokes and energy equations is a one-way
coupling, see for example [1, 2] and citations therein. In the case of natural or mixed
convection flows, the mathematical analysis of the optimal control for the Oberbeck-
Boussinesq system has been considered in several works focusing on stationary
distributed and boundary controls [3, 4, 5, 6]. Distributed controls are very effective,
but they are not feasible in many real cases. In the case of distributed controls, a
feedback control can be applied over long period of time to obtain steady desired
solutions, see for example [7, 8].

In this paper, we consider only boundary steady optimal control problems for
turbulent flows in mixed or natural convection. The mathematical analysis and
numerical simulations of the optimal control for turbulent flows without considering
the temperature dependence have been investigated in past works [9, 10, 11]. An
adjoint approach for the optimal control of turbulent buoyancy-driven flows has
been proposed in [12], however a mathematical analysis has not been presented.

In this work, we consider the Reynolds averaged Navier-Stokes and energy sys-
tem. The state is defined by the average velocity, total pressure field (u, p), the
temperature field T and closed with a k-ω turbulence model [13], where k is the
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turbulent kinetic energy and ω its specific dissipation rate. We introduce the sym-
metric deformation tensor S(u) and its squared norm S2(u) as

S(u) = ∇u + ∇uT , S2(u) = S(u) : S(u) .
The k-ω dynamical production terms Sk and Sω for turbulence equations are defined
by

Sk = νtS(u) : ∇u = 1
2
νtS2(u) ,(1)

Sω = ηω

k
νtS(u) : ∇u = 1

2
ηS2(u) .(2)

We model the flow as incompressible according to the Oberbeck-Boussinesq ap-
proximation neglecting fluid density variations risen by the temperature in the ad-
vective term. Density temperature dependence cannot be neglected in the buoyancy
force and a linear dependence is taken into account through the fluid coefficient of
expansion γ around the reference temperature T0 in the following specific form of
the buoyancy force

fb = γg(T − T0) ,
where g is the gravitational acceleration vector.

The production terms due to buoyancy in k-ω equations are modeled according
to [14, 15]. The source terms depending on the interaction between gravity and the
turbulent heat flux components are modeled as

Sk,b = γνt

Prt
g · ∇T ,(3)

Sω,b = ηγ

Prt
g · ∇T .(4)

The coefficients η, β and β∗ are model constants [13].
Under this framework, we consider an open bounded domain Ω with boundary

Γ and the following governing state equations
(u · ∇)u + ∇p− ∇ · [(ν + νt)S(u)] = f − γg(T − T0) ,(5)
∇ · u = 0 ,(6)
(u · ∇)T = ∇ · [(α+ αt)∇T ] ,(7)
(u · ∇)k − ∇ [(ν + σkνt) · ∇k] = Sk + Sk,b − β∗ k ω ,(8)
(u · ∇)ω − ∇ [(ν + σωνt) · ∇ω] = Sω + Sk,b − βω2 ,(9)

where ν is the kinematic viscosity, α thermal diffusivity of the fluid, νt = k/ω is
the eddy kinematic viscosity and αt = νt/Prt is the eddy thermal diffusivity, where
the turbulent Prandtl number Prt is assumed to be constant. The coefficients σk

and σω are model constants [13]. The system of equations (5)-(9) defines the state
variable (u, p, T, k, ω) when this is completed with suitable boundary conditions.
However, the above system may not have a solution in many physical situations
when k and ω become too large or too small. The k and ω equations have the
typical pattern of the diffusion-reaction equations and therefore, introducing some
assumptions, their solutions can be constrained inside a precise interval limited by
the roots of the equation defined only by the right-hand-side non-linear terms. In an
infinite medium or when advection and diffusion terms are negligible the equations
(8)-(9) reduce to the non-linear right-hand-side terms

Sk + Sk,b − β∗kω = 0 ,(10)
Sω + Sω,b − βω2 = 0 ,(11)


