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REDUCED BASIS FINITE ELEMENT METHODS FOR THE

KORTEWEG-DE VRIES-BURGERS EQUATION

GUANG-RI PIAO, FUXIA YAO, AND WENJU ZHAO∗

Abstract. In this paper, the B-spline Galerkin finite element method and reduced order method
for the Korteweg-de Vries-Burgers equation are considered. The semi-discrete and the fully discrete
schemes are both provided. The reduced order model of the Korteweg-de Vries-Burgers equation

by using proper orthogonal decomposition are provided. The stability and the error estimates
of the corresponding schemes are then analyzed. Finally, numerical simulations are presented to
show the efficiency of our proposed methods.
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1. Introduction

In this paper, we propose numerical methods for solving the Korteweg-de Vries-
Burgers (KdVB) equation: Given Ω = [−L,L], determine u such that

ut + εuux − νuxx + µuxxx = 0, x ∈ Ω, 0 ≤ t ≤ T,(1)

u(−L, t) = u(L, t) = 0, x ∈ Ω, 0 ≤ t ≤ T,(2)

ux(−L, t) = ux(L, t) = 0, x ∈ Ω, 0 ≤ t ≤ T,(3)

u (x, 0) = u0 (x) , x ∈ Ω,(4)

where ε, ν, µ ∈ R are real positive parameters with ενµ ̸= 0.
For the past several decades, many mathematicians and physicists have paid

great attention to such kind of problems. The KdVB equation is one of the most
important non-linear partial differential equations, which was developed by Su and
Gardner [25] to describe the weak effects of dispersion, dissipation and nonlinearity
of wave propagation in a liquid-filled elastic tube. For the parameter ν = 0, (1)-(4)
will be reduced to the KortewegDe Vries (KdV) equation which has been used to
describe the dynamical effects, i.e., ion sound, plasma shock wave [10, 23, 24, 30].
For the parameter µ = 0, (1)-(4) will be simplified to the Burgers equation that has a
widely physical application in many fields, i.e., shock wave propagation, turbulence
flow, etc. Some theoretical regularities such as the existence, uniqueness, stability
of KdV-type equations have been studied in [1, 9, 14, 22], etc. The KdVB equation
incorporates the properties of the KdV equation and Burgers equation which are of
great interest to be studied, and has high research value in applied mathematics.

Many numerical methods have been already studied for the KdV-type equations,
i.e., the finite element method [11, 28] and finite difference discontinuous Galerkin
method [12], finite difference method [16, 27], etc. In this paper, we will numeri-
cally analyze and simulate the KdVB equation. Numerical simulations of nonlinear
systems are relatively expensive with respect to both the storage and the computa-
tional complexity, where the iterative methods for the nonlinear system are usually
required. To efficiently solve this kind of problems, many reduced-order modeling
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techniques are developed. One of the popular reduced order methods at least for
the applications is the proper orthogonal decomposition (POD) analysis. The POD
techniques combined with the Galerkin methods have been widely used to formulate
the reduced order modelings for dynamic systems [2, 5, 6, 15, 17, 20, 21], which can
provide precise approximation with reduced number of degrees of freedom. More-
over, the induced lower dimensional models alleviate the computational load and
memory requirements [3]. In this paper, the approaches to efficiently handle the
nonlinear terms and generate the snapshots are referred to the techniques for the
reduced-order modeling for the Navier–Stokes equations [5, 6, 29]. Similarly to the
fourth order equations [7], the third-order KdVB equation inherits higher regular-
ity than that for the second order partial differential equation. In turn, the usual
C0 finite element basis with less regularity for the second order partial differential
equation is usually not feasible for the KdVB equation.

In this paper, the quadratic B-spline basis with continuous first derivative is used
The main contribution of paper is to perform theoretical analyses of the quadrat-
ic B-spline Galerkin finite element approximation for the KdVB equation and its
related reduced order modeling based on the POD Galerkin finite element approx-
imation.

This paper is organized as follows. In following part of Section 1, we introduce
the notation and preliminaries which are used throughout the paper. In Section
2, the Galerkin finite element methods are provided. The semidiscrete and fully
discrete schemes are analyzed. In Section 3, we obtain the reduced dimension
surrogate model of the KdVB equation by using proper orthogonal decomposition
technique. We also indicate the error between the reduced model solution and its
regular solution. Numerical simulations are presented in the final section.

1.1. Notation and Preliminaries. We use standard notation for the function
spaces. For any integer k ≥ 0, Hk (Ω) denotes the Sobolev space on Ω associated
with inner product (·, ·)Hk and norm ∥ · ∥k. On the space L2(Ω) := H0(Ω), let (·, ·)
and ∥ · ∥ be the L2 inner product and norm, respectively. H−1(Ω) is the dual space
of H1

0 (Ω). The Sobolev space Hk
0 (Ω) with k = 2 is then defined as

(5) Hk
0 (Ω) =

{
u ∈ Hk(Ω) : ∂jxu(x) = ∂jxu(x+ L) = 0, j = 0, . . . , k − 1

}
,

where ∂jxu(x) represents the jth derivative in the sense of distribution with respect
to x of a function u. Let C([0, T ];Hk) be the space of all continuous functions
u : [0, T ] → Hk(Ω) with ∥u∥C([0,T ];Hk) = max0≤t≤T ∥u(t)∥k < ∞. Denote by

L2([0, T ];Hk) the space of square integrable functions u : [0, T ] → Hk(Ω) with

∥u∥2L2([0,T ];Hk) =
∫ T
0
∥u(t)∥2kdt < ∞. To be brief, we set ux := ∂xu and uxx :=

∂2xu. The variational form of (1)-(4) is derived by multiplying (1) with a function
v(x) ∈ H2

0 (Ω) and integrating by parts on Ω. The weak formulation of (1)-(4) is
then written as

(6) (ut, v)−
ε

2

(
u2, vx

)
+ ν (ux, vx)− µ (uxx, vx) = 0

for almost every t ∈ [0, T ].
Let M ∈ N+ be a positive integer. Define the spatial mesh Th with mesh size

h = 2L/M . The grid points are denoted as xj = −L + jh, j = 0, 1, . . . ,M with
subintervals Ij = [xj , xj+1],j = 0, 1, · · · ,M − 1. Let Pr(I) denote the space of
polynomials on the interval I of degree no greater than r ∈ N+. We seek a discrete
approximation uh to the solution of (1)-(4) such that for all t ∈ [0, T ], uh(t) belongs
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