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A WEIGHTED LEAST-SQUARES FINITE ELEMENT METHOD

FOR BIOT’S CONSOLIDATION PROBLEM

HSUEH-CHEN LEE AND HYESUK LEE

Abstract. This paper examines a weighted least-squares method for a poroelastic structure
governed by Biot’s consolidation model. Quasi-static model equations are converted to a first-

order system of four-field, and the least-squares functional is defined for the time discretized
system. We consider two different sets of weights for the functional and show its coercivity and
continuity properties, from which an a priori error estimate for the primal variables is derived.
Numerical experiments are provided to illustrate the performance of the proposed method.
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1. Introduction

Biots consolidation model provides a general description of the mechanical be-
havior of a poroelastic medium and is frequently used in a wide range of applications
in geomechanics, bioengineering, environmental engineering, and various other sci-
ence and engineering areas. The model is based on the equation of linear elasticity
for a solid matrix and Darcys law for the fluid flow through a porous matrix [2, 3].
Generally, solutions of the model are approximated by numerical methods since
the analytical solution can only be derived under the assumption of special condi-
tions [32, 36]. Finite element methods are commonly used in simulations. There
have been various finite element methods proposed for the poroelasticity, includ-
ing mixed finite element methods [15, 26, 28, 31, 35], discontinuous Galerkin finite
element methods [13, 19], least-square methods [20, 21, 33], and hybrid methods
[22, 29, 34] and a decoupling approach [14].

Problems for which solutions are smooth can be solved by standard finite el-
ement discretization. However, a finite element solution may have non-physical
oscillations, known as pressure locking, if it displays some high-pressure gradient
[15, 16, 17]. For example, pressure locking can occur when finite element spaces are
not compatible. Some hybrid finite element methods [29, 35] have been proposed
to overcome this issue. Another locking phenomenon called elasticity locking is
observed when one of the Lamé coefficients becomes large, with the Poisson ratio
approaching 0.5 [30].

The difficulties caused by the incompatibility of the spaces can be avoided by
least-squares finite element methods. One of the main advantages of least-squares
finite element methods is that no inf-sup condition is required between finite ele-
ment spaces. Such flexibility makes the least-squares approach appealing for the
finite element approximation of differential equations with multiple variables. This
work aims to study a weighted least-squares (WLS) functional defined for the time
discretized quasi-static Biot model and compares numerical solutions by the WLS
finite element method with various weights. The WLS functional is defined using
the L2-norm of the equation residuals multiplied by appropriately adjusted weights.
Various developments have been reported for WLS finite element methods applied
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to flow problems. Bochev and Gunzburger [4] developed a mesh-dependent weight
of the WLS functional for Stokes flows based on the Agmon-Douglas-Nirenberg
(ADN) approach. Weighted-norm least-squares methods were considered for prob-
lems with corner or coefficient singularities in [1, 10, 23]. In addition, Lee and Chen
[24] applied a nonlinear weight to least-squares functional for Stokes equations, and
this approach was further developed for non-Newtonian viscoelastic fluids [12, 25].

While extensive work on finite element approximations and analysis have been
devoted to the Biot model, only a few studies of least-squares finite element meth-
ods have been carried out for the model [20, 21, 33]. In [20], Korsawe and Starke
developed a four-field mixed least-squares finite element method for the quasi-static
model with a simplified mass equation and unified modeling parameters. They de-
fined the least-squares functional for the stationary case that arises at each time
step to solve the temporal discretized model and proved the coercivity and conti-
nuity of the functional. In [21], Korsawe et al. numerically studied the Biot model
and compared least-squares results with the standard Galerkin method results. The
authors discussed the accuracy of stress and flux variables approximated directly
in the least-squares method, pointing out that the additional unknowns increase
the degree of freedom of the discretized problem compared to the Galerkin method.
Tchonkova et al. discussed the mixed least-squares method for the poroelasticity
problem of four-field and approximated solutions using linear continuous polyno-
mials for all variables on triangle elements [33]. However, in [21, 33], no weights
were considered for the least-squares functionals.

This work further develops the least-squares approach and analysis presented in
[20] for the full quasi-static model with all modeling parameters. We consider a
WLS finite element method in a similar setting presented in [20]; the least-squares
functional is defined for the four-field modeling equations discretized in time, where
a weight for each term of the functional is appropriately chosen. Some of those
weights need to be dependent on the time step for the analysis of the WLS func-
tional. The choice of different sets of weights is also addressed. The WLS functional
is then analyzed for the coercivity and continuity properties. It is demonstrated
that the use of weights for the functional is helpful for the analysis and improves
the accuracy of numerical solutions. Further, we extend the implementation to the
intracranial pressure simulation [18].

The rest of this paper is organized as follows. Section 2 presents the model
equations and the least-square functional. Section 3 introduces the WLS functional
and the analysis for the functional. Section 4 presents finite element spaces and
error estimation of finite element approximations. Section 5 provides two numerical
examples, where numerical solutions by different sets of weights are compared, and
finally, conclusions follow in Section 6.

2. Model equations and least-squares functional

Let Ω be a bounded, connected domain in RI d , d = 2, 3 with the Lipschitz
boundary ∂Ω. Consider the quasi-static poroelastic system represented by the Biot
model [2]:

∇ · u+
∂

∂t
(csp+ α∇ · η) = fs in Ω,(1)

u+K∇p = 0 in Ω,(2)

−2µ∇ · ε(η)− λ∇(∇ · η) + α∇p = fb in Ω,(3)
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