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NUMERICAL ANALYSIS OF HIGH ORDER TIME STEPPING

SCHEMES FOR A PREDATOR-PREY SYSTEM
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This paper is dedicated to Prof. Max Gunzburger on the occasion of his 75th birthday.

Abstract. Finite element discretisations of the modified predator-prey system are examined. In
particular, fully-discrete schemes based on the discontinuous Galerkin time stepping approach for
the temporal discretisation combined with standard finite elements for the spatial discretisation

are considered. Stability estimates are derived for schemes of arbitrary order and error estimates
that maintain a symmetric structure are proved.
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1. Introduction

The scope of this work is the stability and error analysis of fully-discrete schemes
for the predator-prey system. The predator-prey system under consideration, con-
sists of two coupled parabolic pdes, i.e.,

ut − d1∆u− u(1− |u|) + vh(au) = 0 in (0, T )× Ω
∂u

∂n
= 0 on (0, T )× Γ

u(0, x) = u0 in Ω,
vt − d2∆v − bvh(au) + cv = 0 in (0, T )× Ω

∂v

∂n
= 0 on (0, T )× Γ

v(0, x) = v0 in Ω.

Here, d1, d2 > 0 denote diffusion constants, with d1 ̸= d2, b, c, a > 0 are positive
parameters and Ω ⊂ R3 is a bounded domain with suitably smooth boundary Γ.
The initial data are denoted by u0, v0 respectively. Our analysis covers two of the
most commonly used functional responses h(.), the Holling type II and type III
functionals, defined by:

h(au) =
au

1 + a|u|
or h(au) =

au2

1 + au2
,

respectively, and involves the nonlinear reaction function u(1− |u|). These type of
functional responses were proposed in [30, 31]. For an overview of the role of such
functional responses in these models we refer the reader to [32]. The above system is
often called the ”modified predator-prey system”. Our goal is to establish stability
and error estimates for fully-discrete schemes of arbitrary order. The schemes under
consideration are based on a discontinuous Galerkin -in time- approach combined
with standard conforming finite elements in space. Such schemes are known to
maintain the structural properties of the underlying pde model, in the sense, that it
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possible to prove stability estimates under minimal regularity assumptions. Indeed,
given initial data u0, v0 ∈ L2(Ω), in Section 3, we prove the following estimate:

∥uh∥W (0,T ) + ∥vh∥W (0,T ) ≤ C
(
∥u0∥L2(Ω) + ∥v0∥L2(Ω)

)
,

where uh, vh denote the fully-discrete approximations of weak solutions u, v, and
∥.∥W (0,T ) := ∥.∥L∞[0,T ;L2(Ω)] + ∥.∥L2[0,T ;H1(Ω)] denotes the natural energy norm as-
sociated to the discontinuous Galerkin approximation in time. The key difficulty
involves the derivation of estimates for higher order schemes at the ∥.∥L∞[0,T ;L2(Ω)]

norm in presence of the nonlinear coupling. We note that the above stability es-
timate under minimal regularity assumptions, is the key step in order to develop
a-priori error estimates. In addition, for u, v ∈ W (0, T ) ∩ L∞[0, T ;L∞(Ω)] we es-
tablish the fully-discrete analog of the classical Céa Lemma which in this context,
is an estimate of the form,

∥u− uh∥W (0,T ) + ∥v − vh∥W (0,T ) ≤ C
(
∥u− P loc

h u∥W (0,T ) + ∥v − P loc
h ∥W (0,T )

)
.

Here, P loc
h denotes the standard projection associated to discontinuous Galerkin

schemes that exhibits best approximation properties in terms of the available reg-
ularity of the solution.

We emphasise that this estimate is also derived under minimal regularity as-
sumptions on data and it is applicable when high order schemes are employed.
Such estimate demonstrates that the error of the fully-discrete scheme will conver-
gence at the maximal rate that the chosen approximation spaces and the regularity
of the solution will allow. The estimate is valid for a suitable choice of the temporal
discretisation parameter τ in terms of the parameters a, b, c, d1, d2, but it can be
chosen independent of the size of the spatial discretisation parameter h. Our work
uses ideas and techniques of [9, 8], developed for proving estimates at arbitrary
time points, combined with a suitable ”boot-strap” argument that decouples the
two involved pdes without imposing additional regularity and / or very stringent
conditions between the discretisation parameters and the physical parameters of our
system. In addition the estimate is derived without making assumptions regarding
point-wise space-time stability on uh, vh. To our best knowledge these estimates
are new.

Various issues related to numerical analysis and computational efficiency of
discretisation schemes for systems of reaction-diffusion pdes that resemble the
predator-prey system have been considered before (see e.g. [5, 6, 7, 14, 23, 24, 25,
27, 28, 33, 34, 35, 36, 40]). In particular, we point out [27] where a-priori estimates
are established for the fully-discrete approximation of the predator-prey system us-
ing semi-implicit Euler scheme in time combined with conforming finite elements in
space and [14] where the analysis of first-order in time implicit-symplectic method
is considered.

Stability analysis and a-priori error estimates involving the Brusselator nonlin-
ear coupling structure are presented in the work of [7]. A finite volume scheme
for the Brusselator model with cross diffusion is considered in [35], while an al-
ternative direction (ADI) extrapolated Crank-Nicolson orthogonal collocation al-
gorithm is analysed in [23]. Both papers include various informative computational
results and are applicable in other nonlinear reaction diffusion systems. In [40],
implicit-explicit schemes for various reaction diffusion systems arising in pattern
formation are considered, while analytical and computational aspects of moving
grid time-stepping schemes are studied in [36]. In [24], optimal error bounds of a
fully-discrete scheme based on the implicit-explicit Euler method combined with


