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Abstract. Clipping refers to adding 1 line of code A ⇐ min{A,B} to force the variable A
to stay below a present bound B. Phenomenological clipping also occurs in turbulence models
to correct for over dissipation caused by the action of eddy viscosity terms in regions of small

scales. Herein we analyze eddy viscosity model energy dissipation rates with 2 phenomenological
clipping strategies. Since the true Reynolds stresses are O(d2) (d = wall normal distance) in
the near wall region, the first is to force this near wall behavior in the eddy viscosity by νturb ⇐
min{νturb, κ

Tref
d2} for some preset κ and time scale Tref . The second is Escudier’s early proposal

to clip the turbulence length scale in a common specification of νturb, reducing too large values
in the interior of the flow. Analyzing respectively shear flow turbulence and turbulence in a box

(i.e., periodic boundary conditions), we show that both clipping strategies do prevent aggregate
over dissipation of model solutions.
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1. Introduction

Clipping in scientific programming refers to adding 1 line of code to force a
preset upper or lower bound such as A⇐ min{A,B}. As an example, the standard

parameterization of an eddy viscosity coefficient is νturb = µl
√
k where µ is a

constant, l = l(x, t) is the model’s turbulent length scale and k = k(x, t) is the

model’s approximation to the turbulent kinetic energy. The
√
k term in νturb is often

implemented as
√

max{k, 0} clipping small negative k values. Phenomenologically
deduced clipping occurs in turbulence models to correct for over dissipation caused
by the action of eddy viscosity terms in regions of small velocity scales and is tested
in numerical experiments. Herein we develop analytical support, analyzing model
dissipation, for clipping in URANS (Unsteady Reynolds Averaged Navier Stokes)
turbulence models, complementing phenomenology and numerical tests. The true
Reynolds stresses are O(d2) (d = inf{|x− y| : y ∈ ∂Ω} , the wall normal distance)
in the near wall region. The first clipping strategy we analyze is to force this
O(d2) behavior in the eddy viscosity by νturb ⇐ min{νturb, κ

Tref
d2} for some preset

and non-dimensional κ and time scale Tref . The second clipping strategy acts on

the model’s turbulence length scale, the variable l in νturb = µl
√
k. We analyze

Escudier’s clipping of this turbulence length scale in the interior. Analyzing in the
first and second cases respectively shear flow turbulence and turbulence in a box
(i.e., periodic boundary conditions), we show that both clipping strategies prevent
aggregate over dissipation of eddy viscosity model solutions.

A wide variety of eddy viscosity models exist. Current practice, summarized
in Wilcox [40], favors eddy viscosity based, URANS models arising from time av-
eraging, e.g., Durbin and Pettersson Reif [12] (p. 195). Following, for example
Mohammadi and Pironneau [26] and Wilcox [40] (p.37 Eq 3.9), the model velocity

Received by the editors September 24, 2021 and, in revised form, February 8, 2022.

2000 Mathematics Subject Classification. 76F02, 76F10.

424



CLIPPING OVER DISSIPATION IN TURBULENCE MODELS 425

v(x, y, z, t) ≃ u(x, y, z, t) approximates the finite time average1 u of the Navier-
Stokes velocity u

(1) u(x, y, z, t) =
1

τ

∫ t

t−τ

u(x, y, z, t′)dt′ and fluctuation u′ := u− u.

Causality requires the time window, t−τ < t′ < t, to stretch backwards as above so
present velocities do not depend on future forces. The associated turbulent kinetic
energy is then 1

2 |u− u|2. Averaging the Navier Stokes equations (NSE) yields the
system ∇ · u = 0 and

ut + u · ∇u−∇ · (2ν∇su)−∇ ·R(u, u) +∇p = 1

τ

∫ t

t−τ

f(x, y, z, t′)dt′,

where R(u, u) = u⊗ u− u⊗ u.

Here ν is the kinematic viscosity, p is a pressure, f is the body force, ∇su is the
symmetric part of ∇u, U is a global velocity scale, L is a global length scale and
the Reynolds number is Re = LU/ν. This equation is not closed. Models replace
R(u, u) by terms that only depend on u. For time window τ sufficiently large
(and t > τ) time dependence disappears from the equation and steady state RANS
models result. For time window small, τ can be treated as a small parameter in
R(u, u) and models can be derived by asymptotics. Herein we consider URANS
modelling for intermediate τ .

The main URANS model used in practical turbulent flow predictions is of eddy
viscosity type. Its velocity v(x, y, z, t) ≃ u(x, y, z, t) satisfies

(2) vt + v · ∇v −∇ · (2[ν + νturb]∇sv) +∇p = 1

τ

∫ t

t−τ

f(x, y, z, t′)dt′, ∇ · v = 0.

Herein we first analyze in Section 2 the near wall behavior of the general eddy
viscosity model, i.e., any choice of νturb(x, y, z, t) ≥ 0. The eddy or turbulent
viscosity νturb(≥ 0) must be specified. Section 3 analyzes the away from wall

behavior of the common, 1−equation specification νturb = µl
√
k where k(x, y, z, t)

satisfies the classical equation for the turbulent kinetic energy.
A classical turbulent viscosity specification is the Smagorinsky-Ladyzhenskaya

0−equation model νturb = (0.1δ)2|∇sv| where δ = selected length scale, analyzed
by Du, Gunzburger and Turner in [10], [36]. The classic 1−equation model of
Prandtl and Kolmogorov is analyzed in Section 3. 2−equation models add a second,
phenomenologically derived equation that determines the 1−equation turbulence
length scale l. In all these cases, the total model energy dissipation rate per unit
volume is

(3) εmodel(v) :=
1

|Ω|

∫
Ω

2[ν + νturb]|∇sv(x, y, z, t)|2dx.

A common failure mode of eddy viscosity models is over dissipation, either pro-
ducing a lower Re flow or even driving the solution to a nonphysical steady state.
This occurs due to the action of the turbulent viscosity term near walls or on in-
terior small scales. We study over dissipation here through interrogation of the
above model energy dissipation rate. A wide range of boundary conditions occur in
practical flow simulations. Herein we focus on two: shear boundary conditions to
study turbulence generated by near wall flows (Section 2) and L−periodic to study
turbulence dynamics away from walls (Section 3).

1The time average can occur after ensemble averaging plus an ergodic hypothesis. URANS

models are also constructed ad hoc simply by adding ∂v
∂t

to a RANS model.


