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A FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS

WITH IMPLICIT JUMP CONDITION

FUJUN CAO, DONGFANG YUAN, ZHIQIANG SHENG, GUANGWEI YUAN∗, AND LIMIN
HE

Abstract. In this paper linear elliptic problems with imperfect contact interface are considered,
and a second order finite difference method is presented for linear problems, in which implicit
jump condition are imposed on the interface. Then, the stability and convergence analysis of the

FD scheme are given for the one-dimensional elliptic interface problem. Numerical examples are
carried out for the elliptic problems with imperfect contact interfaces, and the results demon-
strate that the scheme has second order accuracy for elliptic interface problems of implicit jump
conditions with single and multiple imperfect interfaces.
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1. Introduction

Interface problems occur in many multi-physics and multi-phase applications in
science and engineering, particularly for free boundary/moving interface problems,
for examples, the modeling of the Stefan problem of solidification process and crys-
tal growth, composite materials, multi-phase flows, cell and bubble deformation,
and many others. To be simple to expression, we consider the interface problems in
multi-material heat transfer process. According to the different jump conditions,
the interface problems can be divided into two main categories: (1) Perfect con-
tact, that is, the contact between the two objects is perfect, which means that the
temperature and normal heat flux are continuous on the interface. (2) Imperfect
contact, for example, there are weakly conductive thin films or interlayers between
the two objects, so that temperature or normal heat flux is discontinuous across the
interface. In practice, an equivalent boundary condition is often presented on the
thin layer, namely the interface jump (or connection) condition. When the contact
interface is not perfect, the jump condition on the interface can be roughly divided
into the following classes.

(1) The first class of imperfect interface condition is that jump sizes are given
[15, 16, 17, 21, 22], which can be named as explicit jump condition for the sake of
convenience and are shown as follows:[u] = u+ − u− = h1(x), on Γ,

[κ ∂u
∂n⃗ ] = κ+ ∂u+

∂n⃗ − κ− ∂u−

∂n⃗ = h2(x), on Γ,
(1)

where h1(x) and h2(x) are given functions.
(2) The second class of imperfect interface condition is that the jump size of

temperature is proportioned to flux, which can be named as implicit jump condition
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and be written in the following form [1, 2, 3, 9, 11, 12, 36, 58][u] = u+ − u− = λκ− ∂u−

∂n⃗ , on Γ,

[κ ∂u

∂⃗n
] = κ+ ∂u+

∂n⃗ − κ− ∂u−

∂n⃗ = 0, on Γ,
(2)

where Γ is a curve which divides the region Ω into two non-intersected subregions
Ω+ and Ω−, Ω = Ω− ∪ Ω+ ∪ Γ. n⃗ is the outer unit normal vector of the interface
Γ in Ω−. κ− and κ+ represent the material conduction coefficients on Ω− and Ω+,
respectively.

In this paper we consider the problems with the interface conditions, where the
jumps of temperature are related to the normal heat fluxes. The second class
implicit connection condition of the imperfect interface can be used to describe the
heat conduction problem of two objects with imperfect contact [1]. If there is a
interlayer with thickness δ and the thermal conductivity is ϵ between two objects,
and when δ → 0, ϵ/δ → const = λ, then the interlayer is degenerated into a sharp
interface. In the implicit jump conditions, the jumps of physical quantities are
unknown and proportional to the flux across the interface. The implicit connection
condition has a clear physical meaning. Moreover, it can be used to describe the
problem of temperature discontinuity between gas and cooling solid surface [4]. In
addition, it is appeared in some other applications, such as the effective thermal
conductivity of composite materials [5], the dielectric heat conduction problem of
solid spherical particles dispersed in the continuous phase [6], the interface problem
with thermal resistance between the composite and the discrete components [7].
In the problem of steady thermal diffusion in a two component nonhomogeneous
conductor with contact resistance, the flow of heat through the material interface is
also considered to be proportional to the jump of the temperature field [9, 10, 13].
The solution to an imperfect interface problem, therefore, typically is non-smooth
or even discontinuous across the interfaces. It is necessary to study accurate and
robust numerical methods for these elliptic interface problems.

When the jump sizes along the interface are known explicitly, (say [u] = h1,
[κ∂u/∂n⃗] = h2, with given h1 and h2), there are various numerical approaches,
such as immersed interface method (IIM) [15, 16, 17, 19, 20, 23], immersed finite
volume method (IFVM) [24, 25, 26] and immersed finite element (IFE) methods
[27, 28, 30, 31, 34, 37, 38, 45, 56], and they are presented to effectively handle the
explicit jump conditions. Since the pioneer work by [15], the immersed interface
method (IIM) has becoming increasingly popular for elliptic interface problems.
The original IIM achieve uniformly second order accuracy, and a key feature is that
computational stencils for irregular points are modified such that the information on
the boundary is used exactly where grid lines intersect the immersed boundary. Re-
cently, there have been many further developments and analysis in various aspects
of the immersed interface methods [16, 17, 19, 21, 22]. Among these developments,
Li and Ito [17] constructed a fourth-order accurate finite difference method for
interface problems which produces a large sparse linear system with M-matrix in
several-dimensions and is coupled with a multigrid solver achieving fast convergence
of the linear solver. Wiegmann and Bube [21] developed an explicit-jump immersed
interface method for some special cases, where the explicit jump conditions of phys-
ical quantity and its derivatives ([u], [ux], [uxx], etc.) are known. Mittal et al. [23]
use standard finite difference formulas at grid points near the interface using inter-
facial points also as one of the nodes and the Lagrange polynomial interpolation is
then used to find the unknown values at interfacial points. The proposed scheme
is derived for general elliptic interface problems with explicitly known functions


