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CONVERGENCE ANALYSIS OF NITSCHE EXTENDED FINITE

ELEMENT METHODS FOR H(CURL)-ELLIPTIC
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Abstract. An H(curl)-conforming Nitsche extended finite element method is proposed for

H(curl)-elliptic interface problems in three dimensional Lipschitz domains with smooth interfaces.
Under interface-unfitted meshes, the continuous problems are discretized by an H(curl)-conforming
extended finite element space, which is constructed based on the the lowest order of second family
Nédélec edge elements (Whitney elements). A stabilization term defined on transmission faces

is added to the standard discrete bilinear form. Stability results and the optimal error estimate
in the parameter-dependent H(curl)-norm are derived, which are both uniform with respect to
not only the mesh size and the interface position but also the physical parameters. Numerical

experiments are carried out to validate theoretical results.
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1. Introduction

A motivation for considering H(curl)-elliptic interface problems comes from the
modeling of electromagnetic fields. In some electric machine applications, engineers
need to solve an H(curl)-elliptic interface problem at each time step. Due to the
large variety of applications in scientific computing and engineering, there have
been a lot of work about the numerical approximations and convergence analyses
for time-dependent Maxwell interface equations, stationary Maxwell interface equa-
tions and also other related models, such as [10], [13], [11], [33], [26], [28], [14], [30],
[29], [19], [34], [3], [4], [22] and so on.

Among these papers, there are fitted-mesh methods ([28], [30], [29]), extended
finite element methods with unfitted-meshes ([33]), adaptive immersed finite ele-
ment methods with unfitted-meshes ([13]), Lagrange multiplier methods ([11], [3],
[4] )and so on. The optimal error estimates were obtained under interface-fitted
meshes in [28], [30], [29]. Unfortunately, it is usually a time-consuming and non-
trivial task to construct a good fitted-mesh for problems with moving interface
or geometrically complicated interface. To avoid the expensive remeshing require-
ments, researchers pay more attention to unfitted-mesh methods. In this paper, we
focus on one kind of interface-unfitted mesh methods−the extended finite element
method.

The extended finite element method (XFEM) was first proposed by T. Belytschko
and T. Black in [1] to deal with elastic equations in a cracked domain. In [23], A.
Hansbo and P. Hansbo combined this method with Nitsche’s method together,
introduced a new method named Nitsche-XFEM. They successfully applied this
new method to elliptic interface problems and obtained optimal error estimates
independently of the interface position with respect to the mesh. Later, Nitsche-
XFEM was taken to solve other elasticity and Stokes interface problems, such as
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[24], [31], [15], [32] and so on. As for the time-harmonic Maxwell equations, authors
([33]) study XFEM in two dimensional domains.

In this paper, we propose an H(curl)-conforming Nitsche extended finite element
method for the H(curl)-elliptic interface problems in three dimensions. The ex-
tended finite element space is based on the lowest order of second family Nédélec
edge elements. The discrete approximation scheme is formed by the standard bi-
linear formulation and a stabilization term defined on the transmission faces. By
the help of the stabilization term, stable results and the optimal convergent order
are derived, independent of not only the mesh size but also the interface position.
Harmonic weights (see [41]) are applied in this paper, which make sure that all
results are robust with respect to the physical parameters. In addition, comparing
with the Lagrange multiplier method, we also have fewer degrees of freedom.

The layout of this paper is organized as follows. In Section 2, we define some
notations, give the weak form of the original H(curl)-elliptic interface problem and
construct its discrete formulation. Section 3 introduces some necessary assumptions
and auxiliary lemmas. The stability properties containing the continuity and the
coercivity are analyzed in Section 4. Section 5 shows the optimal error estimation
under a parameter-dependent H(curl)-norm. Numerical experiments are present-
ed in Section 6 to validate the theoretical results. Section 7 discusses the final
conclusion.

Throughout this paper, we use bold typefaces to distinguish vectors from scalars,
such as E and H2(Ω), denoting a vector function E = (E1, E2, E3) and a vector
space H2(Ω) = [H2(Ω)]3, respectively. x = (x1, x2, x3) ∈ R3 denotes the position
of one point in the three dimensional space. Constants c or C with or without
subscripts will be used to denote different positive constants which are independent
of the mesh size, the physical parameters, and the interface location relative to the
mesh.

2. H(curl)-elliptic interface problem

2.1. Weak formulation. Consider the following H(curl)-elliptic interface prob-
lem in the domain Ω ⊆ R3

curl(αcurl u) + βu = f in Ω1 ∪ Ω2,

[nΓ × u] = 0 on Γ,

[nΓ × (αcurl u)] = 0 on Γ,

n× u = 0 on ∂Ω,

(1)

where Γ is a C2-smooth boundary of a simple connected Lipschitz polyhedral do-
main Ω1 with Ω1 ⊆ Ω and Ω2 = Ω \ Ω1, vectors nΓ, n represent the unit normal
vector on Γ pointing from Ω1 to Ω2 and the unit outward normal vector of ∂Ω
respectively, see Figure 1. For a suitable scalar function v, its jump across the
interface is defined by [v] = v|Ω1 − v|Ω2 , and a component-wise application to
a vector function. α, β are related physical parameters. For simplicity, we only
concern about the case with β being a strictly positive constant and α being a
piecewise constant in the domain Ω, namely

α =

{
α1 in Ω1,
α2 in Ω2.


