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AN IMMERSED CROUZEIX-RAVIART FINITE ELEMENT

METHOD FOR NAVIER-STOKES EQUATIONS WITH MOVING

INTERFACES

JIN WANG, XU ZHANG, AND QIAO ZHUANG*

Abstract. In this article, we develop a Cartesian-mesh finite element method for solving Navier-
Stokes interface problems with moving interfaces. The spatial discretization uses the immersed
Crouzeix-Raviart nonconforming finite element introduced in [29]. A backward Euler full-discrete

scheme is developed which embeds Newton’s iteration to treat the nonlinear convective term. The
proposed IFE method does not require any stabilization terms while maintaining its convergence
in optimal order. Numerical experiments with various interface shapes and jump coefficients
are provided to demonstrate the accuracy of the proposed method. The numerical results are

compared to the analytical solution as well as the standard finite element method with body-
fitting meshes. Numerical results indicate the optimal order of convergence of the IFE method.
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1. Introduction

Multi-phase immiscible incompressible flows with embedded interfaces are wide-
ly present in many physical phenomena. The related simulations appear in many
branches of science and engineering, such as fluid dynamics, biology, medical sci-
ences, and geology [9, 12, 13, 41, 49], to name just a few. The dynamics of the
two-phase (or multi-phase) flows are governed by the well-known Navier-Stokes
(NS) equations, or Stokes equations for creeping flows, along with the enforce-
ment of jump conditions at interfaces. Physical parameters of the flows, such as
density and viscosity coefficients, are usually discontinuous across the fluid inter-
face [1, 9, 17, 29, 49].

In this article, we consider a two-dimensional interface problem that arises in
a two-phase flow governed by the NS equation. Let Ω ⊂ R2 be an open bounded
domain separated by an interface Γ(t) into two disjoint subdomains Ω−(t) and
Ω+(t). Consider the following unsteady NS equation (NSE) in the velocity-stress-
pressure form:

ut −∇ · σ(u, p) + (u · ∇)u = f in Ω−(t) ∪ Ω+(t)× [0, T ],(1a)

∇ · u = 0 in Ω× [0, T ],(1b)

u = 0 on ∂Ω× [0, T ],(1c)

u(x, 0) = u0, p(x, 0) = p0 in Ω,(1d)

where u represents the velocity field and p represents the pressure. The stress
tensor σ(u, p) is defined by

σ(u, p) = 2µϵ(u)− pI,
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where ϵ(u) = (∇u + (∇u)t)/2 is the strain tensor and I is the identity tensor.
The viscosity coefficient µ(x) is discontinuous across the interface Γ(t), which is a
positive piecewise-constant function defined by

(2) µ(x) =

{
µ− if x ∈ Ω−(t),
µ+ if x ∈ Ω+(t).

Across the interface, the following homogeneous velocity and stress jump condi-
tions are enforced

[u]Γ = 0 on Γ(t),(3a)

[σ(u, p)n]Γ = 0 on Γ(t),(3b)

where the jump [·]Γ is defined by [v]Γ := v+|Γ − v−|Γ, and n is the unit normal
vector to the interface Γ pointing from Ω− to Ω+. We also note that when µ(x) is a
piecewise constant, due to the divergence condition (1b), the momentum equation
(1a) can be written as

(4) ut − µ∆u+ (u · ∇)u+∇p = f in (Ω−(t) ∪ Ω+(t))× [0, T ].

Under this framework, the stress jump condition (3b) can be modified as follows

(5) [(µ∇u− pI)n]Γ = 0.

-
+

Figure 1. a domain with an interface (left), a non-body-fitting
mesh (middle) and a body-fitting mesh (right).

The Navier-Stokes equations sans an interface are widely studied in the context
of finite element methods, including classical finite element methods [16, 18], discon-
tinuous Galerkin (DG) finite element methods [10, 15, 45, 47], and weak Galerkin
finite element methods [27, 46, 51]. Those finite element methods can be extended to
solve pertinent interface problems provided that body-fitting meshes are employed.
However, such body-fitting restriction may hinder the efficiency in solving interface
problems with evolving interfacial geometries and locations because the mesh has to
be generated repeatedly according to each interface configuration. Many numerical
methods based on interface-independent meshes have been developed, such as cut
finite element method (CutFEM) [5, 6, 7, 42], immersed interface method (IIM)
[33], extended finite element method (XFEM)[14], partition of unity finite element
method (PUFEM) [44] and matched interface and boundary (MIB) [53] method.
These unfitted-mesh numerical methods employ modified weak formulations or re-
vised finite element functions around the interface to capture the interfacial jump
behaviors. We refer the readers to [11, 17, 26, 43] for CutFEM, [34] for IIM, [48]
for XFEM, [4] for PUFEM, and [52] for MIB applied to NS moving interface prob-
lems. An illustration of a body-fitting mesh and a non-body-fitting mesh is given
in Figure 1.


