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A MESH-LESS, RAY-BASED DEEP NEURAL NETWORK

METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH

FREQUENCY
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Abstract. This article introduces a mesh-less, ray-based deep neural network method to solve the
Helmholtz equation with high frequency. This method does not use an adaptive mesh refinement
method, nor does it design a numerical scheme using some specially designed basis function to

calculate the numerical solution, but it has the advantages of easy implementation and no mesh.
We have carried out various numerical examples to prove the accuracy and efficiency of the
proposed numerical method.
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1. Introduction

In mathematics, the eigenvalue problem of the Laplace operator is called the
Helmholtz equation, which has many applications in physics, including the wave
equation and diffusive equation. It also has applications in other scientific fields, in-
cluding electromagnetic radiation [4], acoustics [2], and plasma [16], etc. When the
Helmholtz equation is applied to a wave, the eigenvalue value is called the wavenum-
ber. The most obvious feature of the Helmholtz equation is that it is not positive
definite, which makes the solution of the equation have strong oscillations when
the wavenumber is large. In numerical calculations, the high oscillatory property of
the exact solution under high-frequency conditions will cause the approximate so-
lution obtained by the numerical calculation to only have very low accuracy, which
is called the “pollution effect”, cf. [1]. Therefore, from the perspective of algorithm
design, the highly oscillating nature of the solution makes it very challenging to
obtain an effective numerical method for this equation, which is also the purpose
of this article.

We recall that there exist many available numerical algorithms for the Helmholtz
equation with various boundary conditions including, for instance, the finite element
method (FEM), Discontinuous Galerkin method, Spectral method, hybridizable
discontinuous Galerkin method, weak Galerkin method, etc., see [1, 7, 13, 24, 29, 31]
and reference therein. Due to the high oscillating nature of the solution, some
commonly-used numerical methods based on low-order polynomials cannot resolve
the solution well. Instead, they will produce the so-called pollution effect, that is, for
a fixed number of grid points for each wavelength, the numerical error increases with
the increase of wavenumbers, see [1]. Therefore, while using the numerical method
based on the low-order polynomials, unless a certain number of grid points are used
for discretization for each wavelength, the calculation accuracy is relatively poor for
high-frequency waves. Therefore, it is natural to use higher-order polynomials or
oscillatory non-polynomial basis to replace the low-order polynomials. It has been
shown that higher-order polynomials can effectively reduce the pollution effect, see
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[24, 33], however, the computational cost is high due to the increase of degrees of
freedom.

In this article, we try to break away from the traditional numerical methods
based on variational framework using low/high-order polynomial basis, and use
a novel mesh-less deep neural network (DNN) method to solve the high-frequency
Helmholtz equation. We recall that the DNN method has attracted many attentions
in recent years to many classic problems involved in scientific computing, especially
the numerical solution of ordinary or partial differential equations, cf. [23, 5, 3, 8,
10, 12, 11, 18, 19, 21, 28, 30, 32] and references therein. Whether the algorithms
of DNN can be applied to the field of scientific computing to obtain effective and
accurate numerical algorithms has been confirmed by some recent research works.
For example, in [11, 27], the authors give the quantitative relationship between
neural network algorithms and low/high-order finite element methods; in [15], the
authors discuss the approximate properties of the function classes given by the
feedforward neural network using a single hidden layer; and in [17], the authors give
the framework of deriving error estimates for a class of neural network algorithms
according to the number of neurons. Based on these works, some novel methods on
applying the DNN to solving ordinary/partial differential equations are developed,
including the so-called PINN (the physics-informed neural network) method given in
[21, 18], DGM (Deep-Galerkin method) give in [30] and DRM (Deep-Ritz method)
given in [8]. Therefore, inspired by the DLSM (Deep-Least Squares Method) given
in [5], in this article, we introduce a mesh-less, ray-based DNN method to solve
the Helmholtz equation, and to investigate whether the method can be applied to
high-frequency situations well. The mesh-free nature of this method allows us to
easily get rid of designing adaptive grids or special spatial discretization methods,
so it is very easy to implement. For the large wavenumber case, the obtained
numerical results show that the designed DNNmethod can efficiently and accurately
approximate the exact solution of the Helmholtz equations.

The rest of this paper is organized as follows. In Section 2, we review the basic
idea of DNNs. In Section 3, the derivation of the methodology for the Helmholtz
equation is developed. In Section 4, we present some numerical results to demon-
strate the performance of our method. Some concluding remarks are given in
Section 5.

2. DNN method

In this section, we briefly discuss the definition and approximation properties of
the DNNs.

A DNN is a sequential alternative composition of linear functions and nonlinear
activation functions. A n-layer neutral network Nn can be defined as

• Input layer: N 0 = x,
• Hidden layers: N l = σl(W

lN l−1 + bl), l = 1, 2, · · · , n− 1,
• Output layer: Nn = WnNn−1 + bn,

where σ denotes the activation function, Wl denote the weights and bl denote the
biases. The most common used types of activation functions include the sigmoid
function σ(t) = (1 + e−t)−1 and the rectified linear unit (ReLU) σ(t) = max(0, t).
For simplicity, we denote all the parameters in DNN by a parameter vector Θ, i.e.,

Θ = {W1, · · · ,Wn,b1,b2, · · · ,bn}.
In Fig. 1, we sketch a simple fully connected DNN example with 3 hidden layers
and 8 neurons in each hidden layer. The number ml denotes the number of neurons
in the l-th layer.


