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A NUMERICAL ANALYSIS OF THE COUPLED
CAHN-HILLIARD/ALLEN-CAHN SYSTEM WITH DYNAMIC

BOUNDARY CONDITIONS

AHMAD MAKKI, ALAIN MIRANVILLE∗, AND MADALINA PETCU

Abstract. The numerical analysis of the coupled Cahn-Hilliard/Allen-Cahn system endowed
with dynamic boundary conditions is studied in this article. We consider a semi-discretisation
in space using a finite element method and we derive error estimates between the exact and
the approximate solution. Then, using the backward Euler scheme for the time variable, a fully
discrete scheme is obtained and its stability is proved. Some numerical simulations illustrate the
behavior of the solution under the influence of dynamical boundary conditions.
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1. Introduction

We consider the Cahn-Hilliard/Allen-Cahn system with dynamic boundary con-
ditions

(1)



ut = ∆µ, x ∈ Ω,
µ = −∆u + f(u + v) + f(u − v), x ∈ Ω,
vt = ∆v − f(u + v) + f(u − v) − αv, x ∈ Ω,
ut = δ∆Γµ − ∂nµ, x ∈ Γ,
µ = −σ∆Γu + g(u + v) + g(u − v) + ∂nu, x ∈ Γ,
vt + ∂nv − κ∆Γv + g(u + v) − g(u − v) = 0, x ∈ Γ,

where Ω is a 2d or 3d slab, i.e.

Ω =
d−1∏
i=1

(R/(LiZ)) × (0, Ld), Li > 0, i = 1, · · · , d, d = 2 or 3,

with smooth boundary

Γ = ∂Ω =
d−1∏
i=1

(R/(LiZ)) × {0, Ld};

in other words, when d = 2, Ω is the rectangle (0, L1) × (0, L2), u, µ and v are
periodic in x1-direction and the boundary conditions are valid for x2 = 0 and
x2 = L2; when d = 3, Ω is the parallelepiped (0, L1) × (0, L2) × (0, L3), u, µ and v
are periodic in the x1 and x2-directions and the boundary conditions are valid for
x3 = 0 and x3 = L3. The function f is the derivative of some double-well potential
(typically, f(s) = s3 − s) and g is the derivative of a surface potential, (typically,
g(s) = aΓs − bΓ, aΓ > 0, bΓ ∈ R).

In (1), u and v represent a conserved (typically an average concentration) and
a non-conserved order parameter, respectively. See [5] for further relevant refer-
ences. Furthermore, the parameter α reflects the location of the system within the
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phase diagram and may be either positive or negative. In what follows we consider,
without any restriction of generality, α positive (the case α negative can be treated
similarly, adapting certain a priori estimates). Moreover, δ, σ are nonnegative pa-
rameters related to the boundary diffusion and κ > 0 is a physical coefficient. Also,
∆Γ is the Laplace-Beltrami operator on Γ and ∂n is the outward normal deriva-
tive. The evolution boundary value problem (1) is completed by initial conditions
u(0) = u0 and v(0) = v0. We remark that in the particular case that we consider
here, when the domain is a slab, the Laplace-Beltrami operator on Γ reduces to
∂2

x1x1
for the case d = 2 and to ∂2

x1x1
+ ∂2

x2x2
for the case d = 3.

The Cahn-Hilliard/Allen-Cahn system endowed with Neumann boundary con-
ditions was introduced in [4, 5], in order to describe simultaneous order-disorder
and phase separation in binary alloys on a BCC lattice in the neighborhood of the
triple point. For further references on the physical pertinence of the model, we
refer the interested reader to [2]. The authors of [5] explored two phenomenologi-
cal approaches leading to systems of coupled Allen-Cahn/Cahn-Hilliard (AC/CH)
equations. Another important application of the coupled (AC/CH) equations is
that under appropriate compositional conditions, ordering can be induced in a
previously homogeneous material. If the composition differs slightly from these
conditions, the excess composition can emerge as droplets along the boundaries be-
tween the ordered regions. This phenomena can be modeled by a coupled (AC/CH)
system with degenerate mobilities. In similar applications, surface diffusion cou-
pled with motion by mean curvature appears quite naturally. There are additional
effects which are often neglected and which arguably should be included. However,
the coupled motion, by itself, is not finally understood and it was thus reasonable
to isolate it and study it, even given its limitations (see [9]).

In [4], the authors prove the well-posedness and the existence of maximal at-
tractors and inertial sets (i.e., exponential attractors) for the usual cubic nonlinear
term f(s) = s3 − βs in three space dimensions when Neumann boundary condi-
tions are considered. The numerical study using a finite element approximation
was treated in [3] for the case of a degenerate Allen-Cahn/Cahn-Hilliard system
under Neumann boundary conditions.

A similar system, with a non-constant mobility, was treated in [10] where the
existence of weak solutions for a degenerate parabolic system consisting of a fourth-
order and a second-order equation with singular lower-order terms in one space di-
mension with Neumann boundary conditions was proved. In addition, asymptotics
for a similar system with a non-constant mobility, proposed as a diffuse interface
model for simultaneous order-disorder and phase separation, was studied in [19].
There, A. Novick-Cohen focused on the motion in the plane. This framework yields
both sharp interface and diffuse interface models of sintering of small grains and
thermal grains boundary grooving in polycrystalline films. This work was extended
in [20], where the authors studied the partial wetting case, and their analysis ac-
counts for motion in three space dimensions.

The Cahn-Hilliard/Allen-Cahn system (1) is derived from the following Ginzburg-
Landau free energy

J(u, v) =1
2

(∥∇u∥2
Ω + ∥∇v∥2

Ω) + α

2
∥v∥2

Ω

+
∫

Ω
{F (u + v) + F (u − v)} dx + σ

2
∥∇Γu∥2

Γ

+ κ

2
∥∇Γv∥2

Γ +
∫

Γ
{G(u + v) + G(u − v)} dΓ,

(2)


