
INTERNATIONAL JOURNAL OF c⃝ 2022 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 19, Number 6, Pages 739–760

A DECOUPLED, PARALLEL, ITERATIVE FINITE ELEMENT

METHOD FOR SOLVING THE STEADY BOUSSINESQ

EQUATIONS

YUANYUAN HOU, WENJING YAN∗, LIOBA BOVELETH, AND XIAOMING HE

Abstract. In this work, a decoupled, parallel, iterative finite element method for solving the
steady Boussinesq equations is proposed and analyzed. Starting from an initial guess, an iterative

algorithm is designed to decouple the Naiver-Stokes equations and the heat equation based on
certain explicit treatment with the solution from the previous iteration step. At each step of the
iteration, the two equations can be solved in parallel by using finite element discretization. The

existence and uniqueness of the solution to each step of the algorithm is proved. The stability
analysis and error estimation are also carried out. Numerical tests are presented to verify the
analysis results and illustrate the applicability of the proposed method.
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1. Introduction

The system of Boussinesq equations is an important model in fluid dynamics,
describing incompressible flow driven by heat difference, namely the natural convec-
tion phenomenon. The typical examples of the convection can be found in nature,
such as the ocean flow driven by temperature difference, the ventilation in a room,
and the ground water system (see [20, 48, 50, 63, 75, 80]). In engineering, free
convection is exploited in numerous applications, such as double-glazed windows,
cooling in small electronic devices, building insulation, and environmental transport
problems (see [4, 21, 37, 47, 49, 78]).

In the Boussinesq model, the density of the fluid is kept constant and the grav-
itational force depends on the temperature. In this approximation, the fluid and
the temperature are coupled by two terms. The first one is a buoyancy term, which
linearly depends on the temperature and acts in the direction opposite to the grav-
ity, in the stationary incompressible Navier-Stokes equations of the fluid variables.
The second one is a convective term, which is based on the velocity of the fluid, in
the convection-diffusion equation of the temperature variable.

In this work, the stationary Boussinesq equations are considered:

(u · ∇)u− Pr∆u+∇p = PrRaĝθ + γγγ1, in Ω,(1)

∇ · u = 0, in Ω,(2)

u = 0, on ∂Ω,(3)

u · ∇θ − k0∆θ = γ2, in Ω,(4)

θ = 0 on Γ0, ∇θ · n = 0 on ∂Ω \ Γ0, |Γ0| ̸= 0.(5)
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Here Ω is a bounded domain in Rd with Lipschitz continuous boundary ∂Ω, where
d = 2, 3 is the space dimension. Γ0 is part of ∂Ω with its measure |Γ0| ̸= 0. u
is the fluid velocity, p the pressure, and θ the temperature. Furthermore, γγγ1 and
γ2 are the given force functions in [H−1(Ω)]d and H−1(Ω), respectively. Pr and
Ra are Prandtl and Rayleigh numbers, respectively. k0 is the thermal conductivity
parameter. ĝ = g/|g| is the unified gravitational acceleration. Throughout this
paper, vector valued functions are denoted by boldface.

The stationary Boussinesq equations (1)-(5) include, in addition to the veloci-
ty and the pressure fields, the temperature field, making it non-trivial to find the
numerical solution. Early attempts on finding efficient numerical schemes to solve
(1)-(5) were coupled finite element methods, such as the standard Galerkin finite
element method [5], the low-order nonconforming finite element method [72], the
least squared finite element method [57], the projection-based stabilized mixed fi-
nite element method [14], and the two-level finite element method [41]. These
methods usually lead to coupled large systems to solve for u, p, and θ simultane-
ously. Furthermore, the systems are also nonlinear and need iterations to handle
the nonlinearity.

Exploiting the existing computing resources, various decoupled methods can
reduce the computational cost by solving several smaller problems, be easily im-
plemented based on the legacy code of the smaller problems, and speed up the
computation by parallel computation, such as the iterative domain decomposition
methods [6, 7, 9, 10, 11, 12, 22, 23, 24, 25, 28, 29, 30, 39, 53, 54, 55, 66, 79, 84], non-
iterative domain decomposition methods [13, 18, 19, 26, 27, 36, 40, 65, 73, 104, 105],
two-grid methods [2, 8, 60, 61, 82, 83], partition time-stepping methods [17, 62, 68],
Lagrange multiplier methods [3, 34, 51, 103], explicit-implicit linearized stablization
schemes [31, 32, 45, 58, 59, 71, 87, 94, 95, 102], the Invariant Energy Quadratiza-
tion (IEQ) method [15, 81, 88, 90, 91, 92, 97, 99], the Scalar Auxiliary Variable
(SAV) method [33, 52, 64, 69, 70, 98, 100], the zero-energy-contribution technique
[85, 86, 87, 89, 96], and others [38, 46, 56, 67].

To avoid resulting large coupled systems, decoupled methods were also developed
for the Boussinesq equations. By utilizing the data generated from previous iter-
ative steps or temporal steps, the decoupled methods can decompose the original
problem into several subsystems with smaller scales, and usually turn the original
nonlinear problem into linearized ones. For stationary Boussinesq equations, the
sequential iterative methods [42, 43] and two grid methods [74] are developed to
decouple this problem. For the time-dependent case, an implicit-explicit (IMEX)
scheme is proposed to decouple the system and solve the decoupled equations se-
quentially [93]. Extrapolation of velocities in previous temporal steps provides a
prediction in the convection-diffusion equation, which decouples the whole system
and linearizes the trilinear term in the convection-diffusion equation. Then the
Navier-Stokes part is solved by using the solution obtained from the convection-
diffusion equation.

In this paper, we aim to develop and analyze an efficient parallel iterative de-
coupling method for the stationary Boussinesq equations. The key technique is to
design an iteration, which provides a convergent prediction for the coupling terms
hence decouples the convection-diffusion equation from the Navier-Stokes equation-
s. The decoupled subsystems do not have to wait for each other at each step of the
iteration, thus can be solved in parallel. For the proposed method, we carry out the
well-posedness, stability, and convergence analysis. Compared with the analysis in
[5], a different mapping is introduced to prove the existence of the standard finite


