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ASYMPTOTIC AND EXACT SELF-SIMILAR EVOLUTION OF A

GROWING DENDRITE

AMLAN K. BARUA, SHUWANG LI, XIAOFAN LI, AND PERRY LEO

Abstract. In this paper, we investigate numerically the long-time dynamics of a two-dimensional
dendritic precipitate. We focus our study on the self-similar scaling behavior of the primary
dendritic arm with profile x ∼ tα1 and y ∼ tα2 , and explore the dependence of parameters α1 and

α2 on applied driving forces of the system (e.g. applied far-field flux or strain). We consider two
dendrite forming mechanisms: the dendritic growth driven by (i) an anisotropic surface tension
and (ii) an applied strain at the far-field of the elastic matrix. We perform simulations using a
spectrally accurate boundary integral method, together with a rescaling scheme to speed up the

intrinsically slow evolution of the precipitate. The method enables us to accurately compute the
dynamics far longer times than could previously be accomplished. Comparing with the original
work on the scaling behavior α1 = 0.6 and α2 = 0.4 [Phys. Rev. Lett. 71(21) (1993) 3461–3464],
where a constant flux was used in a diffusion only problem, we found at long times this scaling

still serves a good estimation of the dynamics though it deviates from the asymptotic predictions
due to slow retreats of the dendrite tip at later times. In particular, we find numerically that
the tip grows self-similarly with α1 = 1/3 and α2 = 1/3 if the driving flux J ∼ 1/R(t) where

R(t) is the equivalent size of the evolving precipitate. In the diffusive growth of precipitates in an
elastic media, we examine the tip of the precipitate under elastic stress, under both isotropic and
anisotropic surface tension, and find that the tip also follows a scaling law.
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1. Introduction

The evolution of precipitates during a solid-solid phase transformation is a clas-
sical example for studying interface dynamics or systems driven out of equilibrium.
A well-known feature observed during the phase transformation is the formation of
various dendritic microstructures, depending on the physical conditions (e.g. the
composition of the phases, the interfacial crystallographic properties and the ap-
plied far-field flux). Usually a dendrite includes the primary arm (tip region) and
accompanied side-branches. One key aspect of studying the precipitate morphol-
ogy is to understand the evolution of tip profile, as its dynamics determines the
resulting morphology of the dendrite.

An early theory trying to describe the dendritic tip is due to Ivantsov [4] who
assumed that the region near the tip of a dendrite is a branch-less paraboloid grow-
ing with a constant velocity. These assumptions allow him to solve the steady state
heat transport equation and establish an analytical relation between the Stefan
number and the Peclet number, the two dimensionless quantities important for the
process. A large number of work was built upon this original formulation. For
example, capillary effects were coupled to heat transfer problem through Gibbs-
Thomson condition due to the work of Nash and Glicksmann [21, 22]. In a more
recent paper [19], Lacombe et. al. showed that paraboloid shape assumption was
not valid if one moves slightly away from the tip and to a region where the side
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branches emanate. They showed that a much better match with experiments occurs
if a fourth-order correction, in terms of radius of curvature of the tip, is applied
to the predictions of Ivantsov. Ivantsov’s original formulation did not take into
account the effects of side-branching, however considerable research has been done
in this area where the main question is to understand the frequency and and am-
plitude of the secondary branches. These questions are tackled roughly through
two approaches. A few authors suggest that the deterministic oscillation at the
tip is responsible for side-branching [6, 15, 23]. Others explain the mechanism via
stochastic approach and consider selective, thermal fluctuation induced noise to be
responsible for side-branching process [2, 5, 8, 10,14,16].

Li and Beckerman [1] studied the scaling behavior of both the tip and side
branches with different geometric parameters by performing micro-gravity exper-
iments using pure succonitrile crystals. Their experimental results were in good
agreement with the theoretical predictions of [2]. A more recent work on den-
drite morphology using boundary integral methods can be found in [20, 27] where
deterministic side-branching mechanism for 2D and 3D growths were considered.

A seemingly different problem, the Hele-Shaw flow, should also be mentioned
in this context. Although the origins of the Hele-Shaw problem lie in creeping
flow between two closely placed parallel plates, the flow is governed by similar e-
quations. Interesting results that emerge in a Hele-Shaw cell can be found in [9]
where the author investigated formation of different patterns of a growing bubble
both in isotropic and anisotropic surface tension. Numerically, the boundary inte-
gral method has been the most successful approach in Hele-Shaw flow where long
dynamics, both in growing and shrinking interfaces, has been tracked with highly
accurate computation in references such as [26,28,29]. Almgren et al. [30] used ideas
from selection theory to argue that κ2V , where κ is the tip curvature and V is the
tip velocity, should be time independent for a Hele-Shaw bubble. They assumed
that a precipitate in its later phase of growth assumes a cross like shape where one
can ignore the lateral width of the arms of the precipitate in comparison to the arm-
length. From these considerations they derived a scaling law (x, y) → (x/tα1 , y/tα2)
for the growing tip, where t is the elapsed time and α1 and α2 are parameters. The
sum α1+α2 depends on the flux J of the incoming material. For constant flux J = c
they found these constants to be α1 = 0.60 and α2 = 0.40. Their simulations with
moderate and high anisotropy using boundary integral formulation indeed showed
the scaling to be true, however they investigated the precipitate growth for a very
short time duration. The scaling law was verified experimentally by Ignes-Mullol
et al. [17] and very good agreement between the simulation and experiment was
observed. In fact their experimentally verified exponent α1 turned out to be 0.64
which is just slightly off from the theoretical predictions of [30].

In this paper, we expanded the original work of Almgren et al. [30] by answering
several interesting questions that emerge naturally from their work. These are: (i)
whether the scaling law is valid at long times; (ii) what could be a scaling law for
the tip of a precipitate growing under time dependent flux and finally (iii) what
happens when precipitate grows in presence elastic fields, i.e. whether the tip still
exhibits scaling behavior? Our numerical results suggest that at long times, the
Almgren’s scaling law still provides a good estimate of the tip-profile although it
deviates from the asymptotic predictions due to slow retreat of the dendrite tip at
later times. In particular, we find that the tip grows self-similarly with α1 = 1/3
and α2 = 1/3 if the driving flux J ∼ 1/R where R is the equivalent radius of
the precipitate size. In the diffusive growth of precipitates, we observe the tip of


