
INTERNATIONAL JOURNAL OF c© 2023 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 20, Number 1, Pages 47–66 doi: 10.4208/ijnam2023-1003

OPTIMAL BLOCK PRECONDITIONER FOR AN EFFICIENT

NUMERICAL SOLUTION OF THE ELLIPTIC OPTIMAL

CONTROL PROBLEMS USING GMRES SOLVER

K. MUZHINJI∗

Abstract. Optimal control problems are a class of optimisation problems with partial differ-
ential equations as constraints. These problems arise in many application areas of science and

engineering. The finite element method was used to transform the optimal control problems of

an elliptic partial differential equation into a system of linear equations of saddle point form.
The main focus of this paper is to characterise and exploit the structure of the coefficient matrix

of the saddle point system to build an efficient numerical process. These systems are of large
dimension, block, sparse, indefinite and ill conditioned. The numerical solution of saddle point

problems is a computational task since well known numerical schemes perform poorly if they are

not properly preconditioned. The main task of this paper is to construct a preconditioner the
mimic the structure of the system coefficient matrix to accelerate the convergence of the gener-

alised minimal residual method. Explicit expression of the eigenvalue and eigenvectors for the

preconditioned matrix are derived. The main outcome is to achieve optimal convergence results
in a small number of iterations with respect to the decreasing mesh size h and the changes in δ

the regularisation problem parameters. The numerical results demonstrate the effectiveness and

performance of the proposed preconditioner compared to the other existing preconditioners and
confirm theoretical results.

Key words. Partial differential equations (PDEs), PDE-optimal control problems, saddle point
problem, block preconditioners, preconditioned generalised minimal residual method (PGMRES).

1. Introduction

Optimal control problems associated with partial differential equations arise in
a variety application areas such as social, scientific, industrial, medical and engi-
neering applications including optimal control, optimal design and parameter iden-
tification. In particular real life applications include flow control, reaction-diffusion
problem of chemical processes, shape optimization, problems in financial market-
s and optimal pricing. In this paper we deal with the numerical solution of the
distributed optimal control of elliptic equations that arise in real life application-
s in the optimal stationary heat. We consider the following elliptic distributed
PDE-optimal control problem

(1) min(u,y) J(y,u) :=
1

2
‖ y − yd ‖2L2(Ω) +

δ

2
‖ u ‖2L2(Ω),

subject to the constraints

−∆y = f + u in Ω,
y = g on ∂Ω.

(2)

where Ω ⊂ R2 is the domain with boundary ∂Ω. These problems were theoretically
introduced by [11, 22] comprise of the objective function given by Equation (1) to
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be minimised and the PDE-constraints given by Equations (2). Here we want
to find y the state variable that satisfies the PDE-constraint as close to yd as
possible, the desired state which is known over the domain Ω̄ and u the control
variable on the right hand side. This means that y is the solution of Equation
(2) for a given control u either in the whole domain or on the boundary. The
control functions that are either distributed (defined on Ω) or boundary (defined
on ∂Ω). If control functions are defined on ∂Ω we have boundary control problem
for example the optimal temperature distribution otherwise we have a distributed
control problem like the optimal heat source distributed on the whole domain. The
temperature distribution or state y inside the domain is controlled by the enforcing
heating source u. For some practical purposes, we would like to choose the optimal
control which minimizes the difference between the desired stationary temperature
distribution yd and the achievable temperature distribution y. Mathematically, by
assuming the boundary temperature vanishes. In this paper, we develop a new fast
and efficient solver for the distributed optimal control problem Equations (1-2).
The parameter δ is called the regularization parameter which measures the cost of
the control and is supplied and positive. We refer to [3, 8, 9] on their numerical
developments of such problems.

The optimal control problem has a unique solution (y,u) characterised by the
optimality system called the Karush-Kuhn-Tucker (KKT) system [4, 20]. The first
order optimality system of the PDE-optimal control problem Equations (1-2) con-
sists state equation, adjoint equation and the control equation which is a saddle
point problem as given below

−∆p = y − yd, in Ω p = 0 on ∂Ω adjoint equation,(3)

−∆y = f + u, in Ω y = g on ∂Ω state equation,(4)

δu− p = 0 in Ω control equation.(5)

The optimality system is achieved through the Lagrange multiplier method which
partitions the model problem into three equations namely in the state y, control u
and the adjoint, p. For the numerical solution of the elliptic optimal control problem
we apply the finite element method to the Equations (3 - 5) to get the linear saddle
point problem. The finite element method is the most popular technique for the
numerical solution of the PDE-constrained optimisation problems, see [9, 17, 18].
The finite element method results in the coupled linear algebraic system which has
to be solved by the appropriate solvers. The resulting discrete KKT system is

(6) Kx =

 M O K
O δM −M
K −M O

 y
u
p

 =

 Myd
0
d

 = b,

where K ∈ Rn×n is a stiffness matrix and mass matrix M ∈ Rn×n both symmetric
and positive definite. Both K and M are sparse, hence K is sparse, symmetric and
indefinite. The vector d ∈ Rn contains the terms arising from the boundaries of
the finite element of the state y.

The linear algebraic system of Equation (6) is large scale, indefinite and has
poor spectral properties such that well known Krylov subspace methods perform
poorly [3, 18] and references therein. In recent years, the efficient solvers of the
algebraic system that results from the optimal control problems has attracted a lot
of attention and plenty of algorithms and preconditioners are proposed. The vital
requirement for optimal performance of the Krylov subspace iterative methods is
that the system matrix must have good spectral properties. This has preoccupied


