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Abstract. In this article we aim to study finite volume approximations which approximate the
solutions of convection-dominated problems possessing the so-called interior transition layers. The
stiffness of such problems is due to a small parameter multiplied to the highest order derivative
which introduces various transition layers at the boundaries and at the interior points where certain
compatibility conditions do not meet. Here, we are interested in resolving interior transition layers
at turning points. The proposed semi-analytic method features interior layer correctors which are
obtained from singular perturbation analysis near the turning points. We demonstrate this method
is efficient, stable and it shows 2nd-order convergence in the approximations.
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1. Introduction

In this article, we consider a singularly perturbed problem presenting a turning
point, that is

{

Lǫu := −ǫuxx − bux = f in Ω = (−1, 1),
u(−1) = u(1) = 0,

(1.1)

where 0 < ǫ << 1, b = b(x), f = f(x) are smooth on [−1, 1], and for δ > 0, b < 0,
for −δ < x < 0, b(0) = 0, b > 0 for 0 < x < δ, and bx(0) > 0.

In our previous work [16], a new numerical approximation to solve a boundary
layer problem, i.e., Eq. (1.1) with the sign of b(x) unchanged, is developed and
implemented based on enriched subspace techniques. In this paper, we continue
to investigate a more challenging problem possessing an interior transition layer,
which is displayed near x = 0 where the convective coefficient b(x) changes sign.
The point x = 0 is called a turning point. The asymptotic analysis for problem
(1.1) is fully detailed in [14] depending on the compatibility between b and f .

Transition layers are very thin regions, i.e., their thickness is in the order of the
small parameter ǫ, where values of the derivative (or gradient in higher dimensional
problems) are much larger than those in outer regions of the solution. They appear
in the solution when there is a small parameter multiplying the highest derivative
and the coefficient of the convective term changes its sign at points called turning
points. Transition layers match the discrepancies between outer solutions which
occur at turning points. Thus, in the limit case, i.e. when ǫ = 0, singularity
happens in the solution around these turning points. This type of singularity is
called asymptotic singularity (see e.g. [10], [12] and [26]). Transition layers interpret
significant physical phenomena, for instance, turbulent boundary layers occurring
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at the points where the turbulent boundary layer separates since the tangential
velocity vanishes and changes sign at such points (see [3]) in fluid dynamics; or the
propagation of light in a nonhomogeneous medium as an application of Maxwell’s
equations in Electromagnetism (see [1]).

It is well-known that constructing numerical methods for a problem of the type
(1.1) is difficult and computationally expensive. It is because very fine meshes
are required for the transition layer so that sharp changes in the layer can be
accurately captured as well as oscillations due to asymptotic singularity must be
prevented from occurring. There are many works devoted to studying the problem,
both analytically (see e.g., [8], [9], [14], [17], [23]) and numerically (see e.g., [13],
[16], [4], [5], [18]).

Our aim in this article is to construct an accurate and efficient numerical ap-
proximation for the solution of Eq. (1.1) based on the technique developed in [16]
and the novel asymptotic analysis as in [14]. The advantage of our scheme is that
the solution of the transition layer is resolved analytically, thus the mesh size does
not rely on the thickness of the layer, leading to a much reduction in computa-
tional cost but still preserving the properties of a good approximation mentioned
above. The extension to more complex problems, e.g., multiple transition layers,
transition layers incorporating boundary layers, or the coefficient b(x) having zeros
with multiplicity, etc. is discussed in the Conclusion and will appear in subsequent
papers.

The article is organized as follows. In section 2.1, we introduce a conventional
finite volume scheme for problem (1.1) (see e.g., [25]). We then employ singular
perturbation analysis (see e.g., [9], [14], [19], [20], [22]) in order to derive the exact
solution for the transition layer of problem (1.1) in section 2.2. Based on this, a
new Finite Volume discretization is introduced in section 2.3. Numerical results
illustrating for the methods are presented in section 3. Finally, we close the article
with the Conclusion section.

2. Discretizations

To approximate the solution of Eq. (1.1), we employ Finite Volume discretiza-
tions. We first introduce a classical finite volume method and then, via singular
perturbation analysis, we derive some transition layer correctors which capture the
transition layer and spikes caused by the noncompatibility in the data of Eq. (1.1)
(see section 2.3.2 below). These correctors are incorporated in the classical scheme
to produce a stable, accurate and efficient scheme.

2.1. Classical Finite Volume Method (cFVM). In this section, we apply
finite volume discretizations in approximating the solution of Eq. (1.1). Firstly,
we define the mesh parameters for our scheme. We rather use a uniform mesh for
our computation. Let xj , uj be nodal points and values, respectively. The xj are
located at x = −1 + (j − 1/2)h, h = 2/N, j = 0, 1, 2, . . . , N,N + 1 where h is
the mesh size and N is the number of control volumes. The points x0, xN+1 are
called ghost points or fictitious points which do not belong to the computational
domain Ω and their nodal values u0, uN+1 are determined via boundary conditions
and appropriate interpolations at the boundaries (see (2.6) and (2.7) below). Then
the control volumes at xj have faces at xj− 1

2
= xj − h/2, xj+ 1

2
= xj + h/2, j =

1, 2, . . . , N . Note that the boundary points are x 1
2
= −1, xN+ 1

2
= 1.


