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Abstract. In this paper, we focus on an a posteriori residual-based error estimator for the T/
magnetodynamic harmonic formulation of the Maxwell system. Similarly to the A /¢ formulation
[7], the weak continuous and discrete formulations are established, and the well-posedness of
both of them is addressed. Some useful analytical tools are derived. Among them, an ad-hoc
Helmholtz decomposition for the T/ case is derived, which allows to pertinently split the error.
Consequently, an a posteriori error estimator is obtained, which is proven to be reliable and locally
efficient. Finally, numerical tests confirm the theoretical results.
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1. Introduction

Let us consider the electromagnetic fields, modeled by the well-known Maxwell
system :

0B
1 IE=——
1) cur =
(2) curlH:%—]?—i—J,

where E is the electrical field, H the magnetic field, B the magnetic flux density,
J the current flux density (or eddy current) and D the displacement flux densi-
ty. Equation (1) is classically called Maxwell-Faraday equation and equation (2)
Maxwell-Ampere one. In the low frequency regime, the quasistatic approximation
can be applied, which consists in neglecting the temporal variation of the displace-
ment flux density with respect to the current density [12], such that the propagation
phenomena are not taken into account. Consequently, equation (2) becomes :

(3) curlH = J.

Here, the current density J can be decomposed in two terms such that J = J;+ Je..
Js is a known distribution current density generally generated by a coil, and J..
represents the eddy current. Both equations (1) and (3) are linked by the material
constitutive laws :

(4) B =uH,
(5) Jee = 0E,

where p stands for the magnetic permeability and o for the electrical conductivity
of the material. Figure 1 displays the domains configuration we are interested
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in. We consider an open connected domain D C RS, with a Lipschitz boundary
I' = 9D. We define an open simply connected conductor domain D. C D and
we note I'. = dD, its boundary which is supposed to be Lipschitz and such that
T'.NT = 0. In D,, the electrical conductivity o is not equal to zero so that eddy
currents can be created. Finally we define D, = D\ D, as the part of D where the
electrical conductivity o is equal to zero. Boundary conditions associated with the
system (1)-(3) are given by:

(6) Bn=0onT,

(7) Joom=0onT,.

We intend to solve this problem by using the potential formulations often used for

FIGURE 1. Domains configuration.

electromagnetic problems. A similar work was already done for the so-called A /¢
formulation [7]. Another recent paper was concerned with the A /¢ formulation [3]
but in a different framework, having at last the potential vector A as an unique
unknown, and considering the case where p is constant. Here, we consider the T /)
formulation which is first described. Since divJs = 0 in D, there exists a source
magnetic field Hy such that [9]:

curlHy = J; in D,

and since the conductor domain D, is simply connected, as divJ.. = 0, there exists
a source magnetic field T such that:

curl T = J.. in D..

From (3), a magnetic scalar potential 2 can be introduced so that the magnetic
field H can be written by:

HS“FT_VQ in DC7

(8) H=
H, - VQ in De.
From (4), (5) and (8), equation (1) becomes:
9) curl ! curl T | + 9 (u(T-VQ)) = 9 (p1Hs) in De.
o ot ot

Consequently, we also have

(10) div (p (T — VQ)) = —div (uH;) in D,.



