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HIERARCHICAL A POSTERIORI RESIDUAL BASED ERROR

ESTIMATORS FOR BILINEAR FINITE ELEMENTS

MALTE BRAACK AND NICO TASCHENBERGER

Abstract. We present techniques of a posteriori error estimation for Q1 finite element discretiza-
tions based on residual evaluations with respect to test functions of higher-order. This technique is

designed for quadrilateral (or hexahedral) triangulations and gives local error indicators in terms

of nodal contributions. We show reliability and efficiency of the estimator. Moreover, we present
a simplification which is attractive from computational point of view as well.
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1. Introduction

The use of locally refined meshes for the numerical solution of partial differential
equations may lead to efficient numerical methods. In adaptive algorithms, an
important issue is the a posteriori error estimation and the extraction of local error
indicators in order to decide which cells have to be refined.

The technique of a posteriori error estimation for finite element discretizations
goes back to Babuška and Rheinboldt [3]. Since then, several alternative approaches
have been proposed and analyzed, e.g., residual based indicators [1], and hierar-
chical estimators [4, 12]. Moreover, we like to refer the reader to the books of
Ainsworth and Oden [2] and of Babuška and Strouboulis [10] for an overview of
different techniques. An important step for a posteriori error estimation is the
work of Verfürth [11] because it was not only shown that the proposed estimator is
reliable but also efficient, i.e. the estimator can be bounded by the discretitzation
error multiplied by a mesh size independent constant.

In this work, we propose a posteriori error estimators for bilinear finite elements
which are based on the evaluation of residuals with respect to test functions of
higher-order (bi-quadratic). In relation to the standard estimators of [11], we show
that these estimators are locally equivalent. From the practical point of view, the
estimator has the advantage that the computation of jump terms are not necessary.
This is in particular advantageous on quadrilateral meshes with hanging nodes.

A second version of the estimator is even more attractive because it is cheaper
in terms of numerical costs. We show the relation of this technique to established
numerical techniques of dual weighted residuals (DWR). Some numerical examples
illustrate the practical behaviour and show the reliability and efficiency.

The paper is structured as follows. In section 2, we formulate the Poisson prob-
lem and its discretization by finite elements. We recall the a posteriori error esti-
mator proposed in [11]. In section 3, the hierarchical estimator is introduced and
the relation to the estimator of the previous section is discussed. Moreover, we ad-
dress shortly the relation to the implicit estimator of [3]. The modified and cheaper
version is described in section 4. The basic idea is to use a coarser mesh for the
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evaluation of the residuals. The last section is devoted to some numerical examples
in2D and 3D.

2. The model problem and its discretization

2.1. Variational formulation of the Poisson problem. We consider the Pois-
son problem with homogeneous Dirichlet boundary conditions in a two-dimensional
polygonal domain Ω ⊂ R2:

−∆u = f in Ω and u = 0 on ∂Ω .(1)

All results carry over to mixed Dirichlet-Neumann conditions with the usual mod-
ifications.

In order to formulate the variational formulation we use the standard notations:
for any open subset ω ⊂ Ω let L2(ω) be the Lebesgue space of square-integrable
functions over ω, and Hk(ω) the Sobolev space with weak derivatives up to order
k ∈ N. The corresponding norms are denoted by || · ||ω and || · ||k;ω, respectively. The
L2-scalar product and norm is denoted by (·, ·)ω and || · ||, respectively. In the case
ω = Ω, we simply use || · ||, || · ||k and (·, ·). Furthermore, the Hilbert space of H1

functions with vanishing traces on the boundary is denoted by V := H1
0 (Ω) = {φ ∈

H1(Ω) : φ = 0 a.e. on ∂Ω}.
In the variational formulation, we seek for given right hand side f ∈ L2(Ω) the

function u ∈ V such that

(∇u,∇φ) = (f, φ) ∀φ ∈ V .

Due to the Theorem of Riesz, there is always a unique solution.

2.2. Discretization with finite elements. Let {Th}h>0 be a shape regular fam-
ily of triangulations of Ω consisting of triangles or quadrilaterals (but not both at
the same time). For given h and T ∈ Th, hT and ρT denote the diameter and the
inner radius of T , respectively. The set of internal edges of Th will be denoted by
Eh, i.e. for each edge e ∈ Eh the intersection e ∩ ∂Ω does contain at most two
boundary points. The shape regularity implies that the diameters hT , hT ′ of two
neighbouring cells T, T ′ ∈ Th and the length he of a neighbouring edge e scale
similar up to a h-independent constant:

0 < max{hT , hT ′ , he} ≤ cmin{hT , hT ′ , he} .

For triangular meshes, we use the space of polynomials up to degree r, denoted
by Pr. For quadrilateral meshes, the space of polynomials up to total degree r,
denoted by Qr, is used. The finite element space is

for tri’s: V
(r)
h := {φ ∈ V : φ|T ∈ Pr ,∀T ⊂ Th} ,

for quad’s: V
(r)
h := {φ ∈ V : φ|T ∈ Qr ,∀T ⊂ Th} .

The space of (bi-)linear elements is simply denoted by Vh := V
(1)
h . The space of

piece-wise constant function is denoted by V
(0)
h .

With these notations, the corresponding finite element formulation reads

uh ∈ Vh : (∇uh,∇φ) = (f, φ) ∀φ ∈ Vh .(2)


