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AN EFFECTIVE GRADIENT PROJECTION METHOD FOR

STOCHASTIC OPTIMAL CONTROL

NING DU, JINGTAO SHI, AND WENBIN LIU

Abstract. In this work, we propose a simple yet effective gradient projection algorithm for a
class of stochastic optimal control problems. The basic iteration block is to compute gradient
projection of the objective functional by solving the state and co-state equations via some Euler
methods and by using the Monte Carlo simulations. Convergence properties are discussed and
extensive numerical tests are carried out. Possibility of extending this algorithm to more general
stochastic optimal control is also discussed.
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1. Introduction

Stochastic optimal control is an essential tool for developing and analyzing mod-
els that have stochastic dynamics, and it has been fully developed both theoretically
and practically in mathematics, physics and engineering. There has existed a very
extensive body of literature in this area, and it is impossible to present an even very
brief review on its development here. Some introductive accounts (more from math-
ematical points of view) can be found, for example, in [5, 6, 18, 30], and [11, 14].
Some of the research relevant to our work can be found in [5, 15, 18, 29], and
[4, 10, 16, 31, 41, 42, 43]. Practical examples of stochastic optimal control include
engineering systems [10, 27, 31, 43, 45], option pricing and portfolio optimization
models from finance [25, 26, 37, 47, 50], analysis of climate change policies [1], and
biological and medical applications [17].

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with the natural filtra-
tion {Ft}t≥0, which is generated by a one-dimensional standard Brownian motion
{Wt}t≥0. Let T > 0 be a fixed real number that is called time horizon. We
denote by L2(Ω,FT ;R) the space of real-valued square-integrable FT -measurable
random variables, and by L2

F([0, T ];R) the space of real-valued square-integrable
Ft-adapted processes such that

(1) E
{

∫ T

0

|yt|
2dt

}

< +∞.

In this paper we consider numerical solutions to the following stochastic control
problem. The objective functional

(2) J(y, u) =

∫ T

0

E[h(y)]dt+

∫ T

0

j(u)dt,

where h and j are smooth functions with the continuous first order derivatives,
u ∈ Uad is a deterministic control, where Uad is a close convex set in the control
space L2(0, T ).
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An admissible control u∗ is called optimal if it attains the minimum of J(y(u), u),
where the state y(u) ∈ L2

F([0, T ];R) is a stochastic process which is generated by

(3) dy = f(t, y, u)dt+ g(t, y)dWt, y(0) = y0.

In this paper we assume that f, g are continuously differentiable with respect to
(t, y, u) and (t, y), respectively, and that their derivatives are bounded.

Under the above assumptions, we know equation (3) admits a unique solution
y(·) ∈ L2

F([0, T ];R) for the given (y0, u(·)) ∈ R×Uad (see [22]). We call such a y(·)
the corresponding trajectory. Let us note that here the control does not appear
in the diffusion term for easy of exposition. For the general case, one would need
to have more theoretical preparations on backward stochastic differential equations
for a rigorous treatment of the adjoint state equations (see [6, 41, 42]), although
our methods are still applicable.

In general most realistic models do not admit closed form solutions and thus
effective numerical methods play a key role for practical applications of stochastic
optimal control. In the literature numerous numbers of numerical methods have
been proposed for stochastic optimal control and the related problems. Numerical
methods used to solve stochastic optimal control have at least four broad classes:
Those transferring the control problem into finite dimensional stochastic program-
ming, see, e.g., [12, 16, 19, 20, 31, 43, 46, 48]; those based on Dynamic Programming
Principle (DPP), see e.g. [7, 30], in particular those solving HJB equations for the
feedback solutions - there are many references in this area, see [2, 5, 6, 13, 21] for
some early work; the third class based on martingale methods, see e.g. [25, 26, 44];
and those based on the Stochastic Maximum Principle (SMP) [18]. The method
proposed in this paper is based on an iterative algorithm for the solution of the
SMP. There exists extensive research on the first three classes methods. Although
the SMP is widely used in solving the stochastic optimal control, see, e.g., [47] and
[50], it is not often used in numerical algorithms yet. The likely reasons are that
it will not directly produce the feedback control as explained below, and the com-
putation of the adjoins requires the solution of a backwards stochastic differential
equation (BSDE), which is computationally expensive.

Compared with the deterministic optimal control, stochastic optimal control is
much more complicated from the perspective of obtaining numerical solutions that
are realizable to real applications. One of the reasons is that often the value of
optimal control u(t) at a time t will depend on ω (so u(t, ω)) so that it is not very
useful to only compute and then apply the numerical solutions of the optimal con-
trol like in the deterministic case. To be practically useful, some forms of feedback
relationship between the optimal state and optimal control need to be computed
numerically as well (as in the approach of Bellman Equation), as otherwise the
optimal control is difficult to realize. Therefore the existing numerical methods in
the literature are rather complex. In this paper we study a useful case where the
control is deterministic (but the state is still stochastic) as the first step towards
developing fast numerical algorithms for general stochastic optimal control. In this
case the optimal control does not directly depend on ω (but depends on y(t)) so
that it is meaningful to just compute the optimal control and apply it without the
feedback laws. This is quite desirable in some business and engineering decision
making where the stochastic effect is not overwhelming and thus deterministic de-
cision rules are desirable and sufficient. A deterministic solution is also useful for
future planning. Such examples can be found e.g. in [10, 31] (Engineering Control),
[12] (financial) and [43] (Stochastic Hybrid Systems). In this work we are then able
to derive simple yet effective numerical algorithms with convergence analysis. More


