
INTERNATIONAL JOURNAL OF c© 2013 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 10, Number 4, Pages 815–825

AN EFFICIENT COLLOCATION METHOD FOR A NON-LOCAL

DIFFUSION MODEL

HAO TIAN1, HONG WANG2, AND WENQIA WANG1

Abstract. The non-local diffusion model provides an appropriate description of the deformation
of a continuous body involving discontinuities or other singularities, which cannot be described
properly by classical theory of solid mechanics. However, because the non-local nature of the
non-local diffusion operator, the numerical methods for non-local diffusion model generate dense
or even full stiffness matrices. A direct solver typically requires O(N3) of operations and O(N2)
of memory where N is the number of unknowns. We develop a fast collocation method for the
non-local diffusion model which has the following features: (i) It reduces the computational cost
from O(N3) to O(N log2 N) and memory requirement from O(N2) to O(N). (ii) It requires only

one-fold integration in the evaluation of the stiffness matrix. Numerical experiments show the
utility of the method.
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1. Introduction

The classical theory of solid mechanics assumes that all internal forces act
through zeros distance. The corresponding mathematical models are described by
partial differential equations, which do not provide a proper description of problems
with spontaneous formation of discontinuities or other singularities. The non-local
diffusion model was proposed as a reformation of solid mechanics [8], which does
not explicitly involve the notion of deformation gradients.

Galerkin finite element methods were previously developed and analyzed for the
non-local diffusion model [3, 5, 7, 10]. However, these methods face two challenges:

(1) Because of the non-local nature of the non-local diffusion operator, Galerkin
finite element methods generate dense or even full matrices. The direct
solvers used in solving the resulting discrete systems often require O(N3) of
computational work andO(N2) of memory whereN is the number of degree
of freedoms, which are significantly more expensive than the Galerkin finite
element methods for the classical models described by differential equations.

(2) Each entry in the stiffness matrix involves two-folds of integration, which
makes the evaluation of the stiffness matrix more expensive. Further, a fast
solution method can be developed only for a uniform mesh.

In this paper we develop a fast collocation method for the non-local diffusion
model. The method has the following features:

(1) The fast method can be developed on both a uniform mesh and a geomet-
rically decreasing mesh. In particular, the latter is particularly suited for
problems with singularities. For both meshes, the fast collocation method
reduces the computational cost from O(N3) to O(N log2 N) and memory
requirement from O(N2) to O(N).
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(2) Only one-fold of integration is needed in the evaluation of the stiffness
matrix, which further reduces the computational cost.

The rest of the paper is organized as follows. In §2 we present a non-local diffu-
sion model and review its Galerkin finite element approximations. In §3 we develop
a collocation method for the non-local diffusion model. In §4 we develop a fast
collocation method on a uniform mesh. In §5 we develop a fast collocation method
on a geometrically decreasing mesh. In §6 we conduct numerical experiments to
investigate the computational benefits of the fast methods.

2. A non-local diffusion model and its Galerkin finite element approxi-

mation

In this section we briefly discuss the non-local diffusion model and its Galerkin
finite element approximation.

2.1. A non-local diffusion model. A linear steady-state non-local diffusion
model for microelastic materials on a finite bar is given by the following pseudo-
differential equation [7, 8]

(1)

∫ β

α

u(x)− u(y)

|x− y|r
dy = b(x), x ∈ (α, β).

Here b(x) represents the prescribed forcing term and u(x) presents the displacement
of the material. r ≥ 0 is a parameter that characterizes the influence or decaying
property of the kernel function.

By the symmetry of x and y the bilinear form a(u, v) defined by

(2) a(u, v) :=

∫ β

α

v(x)

∫ β

α

u(x)− u(y)

|x− y|r
dydx

can be rewritten as

(3)

a(u, v) =

∫ β

α

∫ β

α

v(x)(u(x) − u(y))

|x− y|r
dydx

=

∫ β

α

∫ β

α

v(y)(u(y)− u(x))

|x− y|r
dydx.

which concludes that

(4)

∫ β

α

∫ β

α

(

v(x)
(

u(x)− u(y)
)

− v(y)
(

u(y)− u(x)
)

|x− y|r

)

dydx = 0.

The numerator of the integrand in (4) can be decomposed as

(5)

v(x)
(

u(x)− u(y)
)

− v(y)
(

u(y)− u(x)
)

= v(x)
[(

u(x)− u(y)
)

−
(

u(y)− u(x)
)]

−
(

v(y)− v(x)
)(

u(y)− u(x)
)

= 2v(x)
(

u(x)− u(y)
)

−
(

v(y)− v(x)
)(

u(y)− u(x)
)

.

We incorporate (5) into (4) to derive an alternative expression for a(u, v)

(6) a(u, v) =

∫ β

α

∫ β

α

(u(x)− u(y))(v(x) − v(y))

2|x− y|r
dydx.

The following theoretical results were proved previously [7, 10]: If r < 1, i.e., the
kernel is integrable, then a(u, v) is a (semi-) positive-definite and bounded bilinear
form on L2(α, β) × L2(α, β). If r = 1 + 2s with s > 0, then a(u, v) is a (semi-)


