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SPATIAL ERROR ESTIMATES FOR A FINITE ELEMENT

VISCOSITY-SPLITTING SCHEME

FOR THE NAVIER-STOKES EQUATIONS

FRANCISCO GUILLÉN-GONZÁLEZ AND MARÍA VICTORIA REDONDO-NEBLE

(Communicated by J. Shen)

Abstract. In this paper, we obtain optimal first order error estimates for a fully discrete
fractional-step scheme applied to the Navier-Stokes equations. This scheme uses decomposition
of the viscosity in time and finite elements (FE) in space.
In [15], optimal first order error estimates (for velocity and pressure) for the corresponding time-
discrete scheme were obtained, using in particular H2

× H
1 estimates for the approximations of

the velocity and pressure. Now, we use this time-discrete scheme as an auxiliary problem to study
a fully discrete finite element scheme, obtaining optimal first order approximation for velocity and
pressure with respect to the max-norm in time and the H1

× L
2-norm in space.

The proof of these error estimates are based on three main points: a) provide some new estimates
for the time-discrete scheme (not proved in [15]) which must be now used, b) give a discrete version

of the H2
×H

1 estimates in FE spaces, using stability in the W1,6
× L

6-norm of the FE Stokes
projector, and c) the use of a weight function vanishing at initial time will let to hold the error
estimates without imposing global compatibility for the exact solution.

Key words. Navier-Stokes Equations, splitting in time schemes, fully discrete schemes, error
estimates, mixed formulation, stable finite elements.

1. Introduction

We consider the Navier-Stokes system, modelling viscous and incompressible
fluids filling a bounded domain Ω ⊂ IR3 in a time interval (0, T ):

(P )



















ut + (u · ∇)u − ν∆u+ ∇ p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u|t=0 = u0 in Ω.

where u : (x, t) ∈ Ω×(0, T ) → IR3 the velocity field and p : (x, t) ∈ Ω×(0, T ) → IR3

the pressure are the unknowns, and data are ν > 0 the viscosity coefficient (which
is assumed constant for simplicity) and f : (x, t) ∈ Ω × (0, T ) → IR3 the external
forces. We denote by ∇ the gradient operator and ∆ the Laplace operator.

Considering a (regular) partition of [0, T ] of diameter k = T/M : (tm = mk)Mm=0,
for a given vector u = (um)Mm=0 with um ∈ X (a Banach space), let us to introduce
the following notation for discrete in time norms:

‖u‖l2(X) =

(

k
M
∑

m=0

‖um‖2X

)1/2

and ‖u‖l∞(X) = maxm=0,...,M‖um‖X
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For simplicity, we will denote H1 = H1(Ω) etc., L2(H1) = L2(0, T ;H1) etc., and
H1 = H1(Ω)3 etc.

The numerical analysis for the Navier-Stokes problem (P ) has received much
attention in the last decades and many numerical schemes are now available. The
main (numerical) difficulties in this problem are the coupling between the pressure
and the incompressibility condition and the nonlinearity of the convective terms.

Fractional step methods in time are becoming widely used in this context, allow-
ing us to separate the effects of different operators appearing in the problem. For
instance, the projection schemes decompose the convection-diffusion operators to
the incompresibility ([20], [21], [19], [13]). These projection schemes are two-step
schemes where the second step is a free divergence projection step. The main draw-
backs of projection methods are that the end-of-step velocity does not satisfy the
exact boundary conditions and the discrete pressure satisfies “artificial” boundary
conditions.

Another class of fractional step methods, so-called θ-schemes (where viscosity
is not fully decoupled from incompressibility), were introduced by Glowinski and
his co-authors in the 1980’s (see for instance a review in [12]). Afterwards, some
analytical results were given, see for instance [8] where stability and convergence of
two fully discrete θ-schemes were proved.

In this paper, we study a fractional step method (so-called viscosity-splitting)
which can be seen as an special case of the θ-scheme. This scheme was inspired in
the previous projection schemes and θ-schemes, jointly to the predictor-corrector
argument applied to incompressible fluids ([6]). This viscosity-splitting method
was studied in [1], [2], [3] and [4]. It is a two-step scheme splitting the nonlin-
earity and the incompressibility of the problem into two different steps (but keep-
ing viscosity term and boundary conditions in both steps). Essentially, in this
viscosity-splitting scheme, given um

h an approximation of u(tm), first one computes

an intermediate velocity u
m+1/2
h (as a first approximation of u(tm+1)) by means

of a convection-diffusion problem, and afterwards (um+1
h , pm+1

h ) (as approximation
of (u(tm+1), p(tm+1))) is obtained solving a generalized Stokes problem. On the
other hand, the θ-scheme is a three-step method; the first and third step (or gener-
alized Stokes problem) accounts for viscous effect together with incompressibility,
but it also includes an explicit convective term; the second step (or regularized
Burger’s problem) also includes an implicit viscous term and a non-linear implicit
approximation of convection together with an explicit pressure gradient but not the
incompressibility condition.

In [1], [2], Blasco, Codina and Huerta prove the convergence of the time-discrete
viscosity splitting scheme. Afterwards, also for the time-discrete case, error esti-
mates of order O(k) in l2(H1)∩ l∞(L2) for the end-of-step velocity um+1 and order
O(k1/2) in l2(L2) for the pressure pm+1 are obtained in [3]. Moreover, in [4] these
error estimates are used to obtain the following error estimates for a fully discrete
scheme based on O(h) finite element approximations in H1 × L2 for the velocity
and pressure:

‖u(tm)− um
h ‖l∞(L2)∩l2(H1) ≤ C (k + h),

under the constraint h2 ≤ C k.
On the other hand, in [2] numerical computations with this viscosity-splitting

scheme drive to order O(k) in L2(Ω) for velocity and pressure. In [11], this time
scheme is studied jointly to Galerkin discontinuous FE methods in space with P1×
P0 approximation. From the analytical point of view, order O(k + h) in l∞(L2)

for the velocity and order O(
√
k + h) in l2(L2) for the pressure were obtained.


