
INTERNATIONAL JOURNAL OF c© 2014 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 11, Number 1, Pages 86–101

ANALYSIS AND FINITE ELEMENT APPROXIMATION OF

BIOCONVECTION FLOWS WITH CONCENTRATION

DEPENDENT VISCOSITY

YANZHAO CAO AND SONG CHEN

(Communicated by HONG WANG)

Abstract. The problem of a stationary generalized convective flow modelling bioconvection is
considered. The viscosity is assumed to be a function of the concentration of the micro-organisms.

As a result the PDE system describing the bioconvection model is quasilinear. The existence and

uniqueness of the weak solution of the PDE system is obtained under minimum regularity as-
sumption on the viscosity. Numerical approximations based on the finite element method are con-

structed and error estimates are obtained. Numerical experiments are conducted to demonstrate

the accuracy of the numerical method as well as to simulate bioconvection pattern formations
based on realistic model parameters.
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1. Introduction

Bio-convection occurs due to on average upwardly swimming micro-organisms
which are slightly denser than water in suspensions. A fluid dynamical model treat-
ing the micro-organisms as collections of particles was first derived independently
by M.Levandowsky, W. S. Hunter and E. A. Spiegel [16], and Y. Moribe [22] which
we describe as follows. Let Ω ⊂ R3 be a bounded domain with smooth boundary
∂Ω. At point x ∈ Ω, let u(x) = {uj(x)}3j=1 and p(x) respectively denote the ve-
locity and pressure of the culture fluid while c(x) refers to the concentration of the
micro-organisms. The steady state system for (u, c, p) takes the form

− div (ν(c)D(u)) + (u · ∇)u +∇p = −g(1 + γc)i3 + f , in Ω ,

div u = 0 , in Ω ,

−θ∆c+ u · ∇c+ U
∂c

∂x3
= 0 , in Ω .

(1.1)

Here ν(·) > 0, as a function of the concentration c, denotes the kinematic viscosity
of the culture fluid, D(u) = 1

2 (∇u +∇uT ) denotes the stress tensor, f refers to the
volume-distributed external force, g is the acceleration of gravity, θ and U are the
diffusion rate and the mean velocity of upward swimming of the micro-organisms
respectively, i3 = (0, 0, 1) is the vertical unitary vector, and the constant γ > 0 is
given by γ = ρ0/ρm − 1, where ρ0 is the density of the micro-organisms and ρm is
the density of the culture fluid.
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The bioconvection model (1.1) is a special case of a more general equation de-
scribing the diffusion and transformation of an admixture in a region [1]. The
first equation is a Navier-Stokes type equation describing the motion of the viscous
micro-organisms while the second equation describes the incompressibility of the
culture fluid. The last equation of (1.1) describes the mass conservation:

d

dt
c+ div q = 0 , in Ω ,

where
d

dt
=

∂

∂t
+ (u,∇) is the material derivative along the fluid particle and

q = −θ∇c+Uci3 represents the flux of micro-organisms. We prescribe the boundary
conditions for u and c as

u = 0 , on ∂Ω ,

θ
∂c

∂n
− Ucn3 = 0 , on ∂Ω .

(1.2)

The second equation of (1.2) refers to zero flux on the boundary where n =
(n1, n2, n3) is the exterior unitary normal vector on ∂Ω. We further assume the
fixed total mass for the micro-organisms:

(1.3)
1

|Ω|

∫
Ω

c(x)dx = α ,

for some constant α. Condition (1.3) assures that no micro-organisms are allowed
to leave or enter the container. Now the complete system describing the motion of
micro-organisms takes the form

(1.4)



− div (ν(c)D(u)) + (u · ∇)u +∇p = −g(1 + γc)i3 + f , in Ω ,

div u = 0 , in Ω ,

−θ∆c+ u · ∇c+ U
∂c

∂x3
= 0 , in Ω ,

u = 0 , θ
∂c

∂n
− Ucn3 = 0 , on ∂Ω ,

1

|Ω|

∫
Ω

c(x)dx = α .

In an ideal Newtonian fluid, the viscosity ν is a constant. In this case, the existence
of the solution as well as the positivity of the concentration are proved in [14]
where the authors considered both the stationary and evolutionary cases. The
evolutionary case of system (1.1) with constant viscosity ν is studied numerically
in [12]. The numerical study of slightly different bioconvection models can be found
in [4], [8], [9], [7] and [13].

In general, for particle models, the viscosity is related to the concentration of
the solute. Albert Einstein showed in his Ph.D thesis [6] that

(1.5)
ν

ν0
= 1 + ξc

when the concentration c is small, where ν is the viscosity of the suspension, ν0

is the viscosity of the pure solution and ξ is a proportionality coefficient, often
chosen to be 2.5. This model was later extended by adding a quadratic term of
c by Batchelor [2] for larger c (≥ 10%). When the concentration is much higher,
the relative viscosity ν

ν0
varies as an exponential function of concentration c ([17],

[15] and [3]). A recent work [5] showed the existence and uniqueness of a periodic


