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CONVERGENCE OF ADAPTIVE FEM FOR SOME ELLIPTIC

OBSTACLE PROBLEM WITH INHOMOGENEOUS DIRICHLET

DATA

MICHAEL FEISCHL, MARCUS PAGE, AND DIRK PRAETORIUS

Abstract. In this work, we show the convergence of adaptive lowest-order FEM (AFEM) for an
elliptic obstacle problem with non-homogeneous Dirichlet data, where the obstacle χ is restricted
only by χ ∈ H2(Ω). The adaptive loop is steered by some residual based error estimator introduced
in Braess, Carstensen & Hoppe (2007) that is extended to control oscillations of the Dirichlet
data, as well. In the spirit of Cascon et al. (2008), we show that a weighted sum of energy
error, estimator, and Dirichlet oscillations satisfies a contraction property up to certain vanishing
energy contributions. This result extends the analysis of Braess, Carstensen & Hoppe (2007)
and Page & Praetorius (2013) to the case of non-homogeneous Dirichlet data as well as certain
non-affine obstacles and introduces some energy estimates to overcome the lack of nestedness of
the discrete spaces.
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1. Introduction

1.1. Comments on prior work. Adaptive finite element methods based
on various types of a posteriori error estimators are a famous tool in science and
engineering and are used to deal with a wide range of problems. As far as elliptic
boundary value problems are concerned, convergence and even quasi-optimality of
the adaptive scheme is well understood and analyzed, see e.g. [5, 16, 19, 29, 30, 37,
38].

In recent years the analysis has been extended and adapted to cover more general
applications, such as the p-Laplacian [40], mixed methods [13], non-conforming
elements [14], and obstacle problems. The latter is a classic introductory example
to study variational inequalities which represent a whole class of problems that often
arise in physical and economical context. One major application is the oscillation of
a membrane that must stay above a certain obstacle. Other examples are filtration
in porous media or the Stefan problem (i.e. melting solids), in both of which non-
homogeneous Dirichlet data play an important role. Also in the financial world,
obstacle problems arise, e.g. in the valuation of the American put option [34], where
one has to deal with various non-affine obstacles. For a broader understanding of
these problems, we refer to [21] and the references therein. The great applicability in
many scientific areas thus make numerical analysis and mathematical understanding
of the obstacle problem both, interesting and important. As far as a posteriori
error analysis is concerned, we refer to [6, 8, 9, 17, 26, 31, 39]. Convergence of
an adaptive method for elliptic obstacle problems with globally affine obstacle was
proven in [10, 33]. Both of these works, however, considered homogeneous Dirichlet
boundary data and affine obstacles only.
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In [11], the authors generalized the analysis of [10] to general H1(Ω)-obstacles.
Convergence of the proposed method is, however, only proved up to some consisten-
cy errors, and the analysis relies on homogeneous Dirichlet conditions. Moreover,
some steps in the analysis are somewhat unclear, as the reliability proof depends
on certain estimates which are not explained or properly cited.

1.2. Contributions of current work. We treat the case of a general obstacle
χ ∈ H2(Ω). By a simple transformation and allowing non-homogeneous Dirichlet
data (Prop. 4), this can, however, be reduced to the case of a constant zero-obstacle.
Since our analysis works for general globally affine obstacles, even without the
reduction step, we consider affine obstacles and non-homogeneous Dirichlet data
in the following. We follow the ideas from [33], i.e. adaptive P1-FEM for some
elliptic obstacle problem with globally affine obstacle. Contrary to [10, 11, 33],
however, we allow non-homogeneous Dirichlet boundary data g ∈ H1(Γ), which are
approximated by some gℓ via nodal interpolation within each step of the adaptive
loop. In contrast to the aforementioned works, we thus do not have nestedness of
the discrete ansatz sets, which is a crucial ingredient of the prior convergence proofs.
In the spirit of [16] and in analogy to [33], we show that our adaptive algorithm,
steered by some estimator ̺ℓ, guarantees that the combined error quantity

∆ℓ := J (Uℓ)− J (uℓ) + γ ̺2ℓ + λ apx2ℓ(1)

is a contraction up to some vanishing perturbations αℓ → 0, i.e.

∆ℓ+1 ≤ κ∆ℓ + αℓ,(2)

with 0 < γ, κ < 1, λ > 0, and αℓ ≥ 0. The data oscillations on the Dirichlet bound-
ary are controlled by the term apxℓ, and the quantity uℓ denotes the continuous
solution subject to discrete boundary data gℓ, which is introduced to circumvent
the lack of nestedness of the discrete spaces. Convergence then follows from a weak
reliability estimate of ̺ℓ, namely

̺ℓ → 0 ⇒ ‖u− Uℓ‖H1(Ω) → 0,(3)

since ̺ℓ . ∆ℓ → 0 as ℓ → ∞. We point out that our convergence proof makes
use of the so called estimator reduction and is thus fairly independent of the mesh-
refinement strategy. This is an improvement over the earlier works [10, 11] which
rely on the discrete local efficiency of the underlying estimator and therefore require
mesh-refinement strategies which guarantee the so-called interior node property.

1.3. Outline of current work. In Section 2, we formulate the continuous
model problem and recall its unique solvability. In Section 3, the same is done
for the discretized problem. Section 4 is a collection of the main results of this
paper. Here, we introduce the error estimator ̺ℓ, which is a generalization of the
corresponding estimators from [10, 33]. We then state its weak reliability (Theorem
7) and our version of the adaptive algorithm (Algorithm 9). Finally (Theorem
10), we state that the sequence of discrete solutions indeed converges towards the
continuous solution u ∈ H1(Ω). The subsequent Sections 5–7 are then devoted to
the proofs of the aforementioned results and numerical illustrations.

2. Model Problem

2.1. Problem formulation. We consider an elliptic obstacle problem in R
2

on a bounded Lipschitz domain Ω with polygonal boundary Γ := ∂Ω. An obstacle


