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Abstract. We present and analyze a subgrid viscosity Lagrange-Galerkin method that combines
the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale
eddy viscosity and mixed methods. Appl. Math. Comp., 133: 147-157, 2002, and a conventional
Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results
in an efficient and easy to implement stabilized method for convection dominated convection-
diffusion-reaction problems. Numerical experiments support the numerical analysis results and
show that the new method is more accurate than the conventional Lagrange-Galerkin one.
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1. Introduction

The design of efficient and accurate convection-diffusion algorithms is of signif-
icant importance in the computational fluid dynamics community, in particular,
when the transport terms of the equations describing the mathematical model be-
come dominant with respect to the diffusion ones. In this case there appear a large
variety of spatial-temporal scales that have to be properly resolved in order to ob-
tain a numerical solution sufficiently close to the exact one. The prototype problem
to test a convection-diffusion algorithm considers a passive substance, the concen-
tration of which is denoted by c (x, t), in a bounded domain D ⊂ R

d (d = 1, 2, 3)
with Lipschitz continuous boundary ∂D, such that

(1)











∂c

∂t
+ b · ∇c− ε∆c+ αc = f in D × (0, T ) ,

c = 0 on ∂D × [0, T ] and c(x, 0) = v in D,

where b is the velocity vector that for simplicity we shall assume that vanishes on
∂D×[0, T ], ε > 0 is the diffusion coefficient, and [0, T ] denotes the time interval. We
assume that b ∈ L∞(0, T ;W 1,∞(D)d), f ∈ L2(0, T ;L2(D)), α ∈ C([0, T ];C(D)),
v ∈ H1(D), and ε ≪ ‖b‖L∞(D×(0,T ))d ; moreover, there exists a positive constant α

such that for all (x, t) ∈ D × [0, t]), α(x, t) ≥ α ≥ 0. In many places the material
derivative Dc

Dt := ∂c
∂t + b · ∇c is used.

The dimensionless form of this equation contains the so-called Péclet number
Pe defined as Pe = UL

ε , where U and L represent a characteristic velocity and a
characteristic length scale respectively. The numerical treatment of this problem is
difficult when Pe is large enough because the diffusion term, ε∆c, may be considered
as a perturbation to the convective term, ∂c

∂t + b · ∇c, in regions where c (x, t) is
smooth so that in these regions the dynamics of the solution is mainly governed
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by ∂c
∂t +b · ∇c, the latter mathematical expression represents the change of c along

the characteristic curves (or trajectories of the flow particles) of the hyperbolic
operator ∂

∂t + b · ∇. But the existence of boundary conditions to be satisfied by

c (x, t) on ∂D× (0, T ) is incompatible with the hyperbolic character of ∂c
∂t +b · ∇c;

hence, the imposition of the boundary conditions will lead to the appearance of a
region near the boundary where the solution has to accommodate to satisfy the
boundary conditions. This region is termed boundary layer, and one can show
through perturbation analysis that its width is O(Pe−α), 0 < α < 1. Therefore, for
high Péclet numbers the boundary layer is narrow and, consequently, the solution
will develop a strong gradient in it. It is well known, see for instance [21], that
numerical methods based on Galerkin projection (either finite elements, or spectral
methods, or hp finite elements) have serious drawbacks in solving the convection-
diffusion equation at high Pe numbers for the following reasons: (1) they will
develop spurious oscillations (Gibbs phenomenon), which pollute the numerical
solution, unless the boundary layers are properly resolved; this means that one has
to allocate many mesh-points in regions close to the boundary layers to suppress
the spurious oscillations; (2) the error of standard Galerkin methods is of the form

max
tn

‖c(tn)− cnh‖L2(D) = CG (hm +∆tq) ,

where h is the mesh size, ∆t the size of the time step, m and q positive real numbers,
and the constant CG is of the form

CG ∼ Pe exp(tn max
D×[0,tn]

|b|Pe).

Issue (1) and numerical stability reasons require the use of implicit time stepping
schemes to advance in time the numerical solution and, consequently, the use of
non-symmetric solvers; the latter being less efficient than solvers for symmetric
systems.

Following different approaches, such as Eulerian, Eulerian-Lagrangian, and La-
grangian, several algorithms have been devised in the framework of Galerkin meth-
ods to overcome the drawbacks described above. In the Eulerian approach one
calculates mesh-point values of c at time instants tn, formulating the numerical
method in a fixed mesh with the purpose of suppressing the wiggles without dam-
aging the accuracy of the method. To this respect, we shall refer to the SUPG
(Stream-Upwind-Petrov-Galerkin) and the Galerkin/least squares algorithms de-
veloped by Hughes and coworkers [6], [17] for convection-diffusion problems of
a passive substance, as well as for the Navier-Stokes equations and conservation
laws; the edge stabilization methods [7]; the subgrid viscosity methods of [11] and
[20], and finally the variational multiscale methods introduced by [16] and further
developed by many people.

In the Lagrangian approach one attempts to devise a stable numerical method
by allowing the mesh-points to follow the trajectories of the flow. The problem now
is that the mesh undergoes large deformations after a number of time steps, due
to stretching and shearing, consequently some sort of remeshing has to be done in
order to proceed with the calculations. The latter may become a source of large
errors.

In the Eulerian-Lagrangian approach the purpose is to get a method that com-
bines the good properties of both the Eulerian and Lagrangian approaches. There
have been various methods trying to do so, among them we shall cite the character-
istics streamline diffusion (CSD) method, the Eulerian-Lagrangian localized adjoint


