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Abstract. In the present paper a general technique is developed for construction of compact
high-order finite difference schemes to approximate Schrödinger problems on nonuniform meshes.
Conservation of the finite difference schemes is investigated. The same technique is applied to
construct compact high-order approximations of the Robin and Szeftel type boundary conditions.
Results of computational experiments are presented.
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1. Introduction

High power high brightness edge-emitting semiconductor lasers and optical am-
plifiers are compact devices and they can serve a key role in different laser tech-
nologies such as free space communication [3], optical frequency conversion [11],
printing, marking materials processing [16], or pumping fiber amplifiers [13].

To simulate the generation and/or propagation of the optical fields along the
cavity of the considered device one can use a 2+1 dimensional system of PDEs
which is based on the traveling wave (TW) equations for slowly varying in time
longitudinally counter-propagating and laterally diffracted complex optical fields
E±(z, x, t) [2], which are nonlinearly coupled to the linear ODEs for the complex
induced polarization functions p±(z, x, t) and to the diffusion equation for the real
carrier density N(z, x, t) [17]:
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Here, t ∈ R+, z ∈ [0, L] and x ∈ R denote temporal, longitudinal and lateral
coordinates, respectively. Functions β, N and parameters gp, κ

∓, ωp, γp, D, µ
represent the propagation factor, injected current and nonlinear carrier recombi-
nation, Lorentzian gain amplitude, field coupling coefficient, gain peak detuning,
Lorentzian half-width at half maximum, carrier diffusion coefficient, photon/carrier
life time relation, respectively. Optical field functions E± satisfy the following
reflection-injection conditions at the longitudinal boundaries of the domain:

E+(0, x, t) = r0(x)E
−(0, x, t) + a0(x, t),

E−(L, x, t) = rL(x)E
+(L, x, t) + aL(x, t).
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The initial conditions (if properly stated) are not very important, since after some
transients the simulated trajectories approach one of the existing stable attractors.

A large scale system implied by a discretization of the computational domain
and an appropriate approximation of artificially imposed lateral boundary con-
ditions can be solved effectively with the help of parallel computing [17, 4, 10].
However, for the precise dynamic simulations of long and broad devices and tun-
ing/optimization of the model with respect to one or several parameters, a further
speedup of computations is still desired.

Since, in general, the carrier dynamics is slow (0 < µ ≪ 1), and in the most cases
the polarization equations have only a small impact on the overall dynamics of the
optical fields (0 ≤ gp/γp ≪ 1), a proper construction of numerical schemes for the
diffractive field equations plays a decisive role. Here we note, that for the tem-
porarily fixed distribution of the propagation factor β, neglected polarization and
absent coupling between counter-propagating fields (vanishing distributed coupling
κ± = 0 as well as field reflectivities at the longitudinal boundaries r0 = rL = 0), the
equation for the forward (backward) propagating field on the characteristic lines
t − z = t0 (or t − (L − z) = t0) is given by a linear 1+1 dimensional Schrödinger
equation

∂u

∂ν
= − i

2

∂2u

∂x2
− iB(ν, x)u,

where the field u(ν, x) = E+(z, x, t) (or u(ν, x) = E−(L − z, x, t)), and the initial
condition u(0, x) is defined by the optical injection function a0(x, t) (or aL(x, t)).
Thus, a construction of the effective numerical schemes for the full model is closely
related to the construction of the schemes for above given linear Schrödinger prob-
lem. One of the main challenges in this case is an implementation of the appropriate
boundary conditions (BCs) [1]. In our previous paper [6] we have investigated the
performance of the standard Crank-Nicolson scheme supplemented with the exact
discrete transparent boundary conditions (DTBCs) [8], with the approximate
DTBCs suggested by Szeftel [18] as well as with simple Dirichlet boundary condi-
tions.

The main goal of the present paper is to develop a general technique for construc-
tion of compact high-order finite difference schemes for approximation of Schrödin-
ger problems on nonuniform meshes. All these schemes can be of practical interest
when dealing with broad lasers having a relatively high regularity of transversal
heterostructures. In this case, due to enhanced spatial approximation precision, we
can use a relatively sparse mesh in the transversal spatial direction, and, never-
theless, obtain the numerical solutions with a required precision. We note that in
the case of uniform meshes, for the compact high-order finite difference scheme the
corresponding exact DTBCs are derived in [12, 15]. We note that using the same
ideas exact DTBCs can be constructed for the compact high-order finite difference
schemes on non-uniform meshes, but such BCs are non-local in time and are not
very efficient for applied problems described above.

The rest of the paper is organized as follows. In Section 2 we construct compact
finite difference schemes on uniform and nonuniform meshes. On uniform mesh
this high-order finite difference scheme coincides with the Numerov approximation.
The conservation laws of the constructed finite difference schemes are investigat-
ed. For non-uniform meshes these laws can be violated due to non-symmetrical
approximation of the source terms.

In Section 3, by using the technique from the previous section, we construct com-
pact high-order approximations of the Robin type BCs, which can be interpreted


