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Abstract. We consider very weak solutions of a nonlinear version (non-Hookean materials) of
the beam stationary Bernoulli-Euler equation, as well as the similar extension to plates, involving
the bi-Laplacian operator, with Navier (hinged) boundary conditions. We are specially interested
in the case in which the usual Sobolev space framework cannot be applied due to the singularity
of the load density near the boundary. We present some properties of such solutions as well as
some numerical experiences illustrating how the behaviour of the very weak solutions near the
boundary is quite different to the one of more regular solutions corresponding to non-singular load
functions.
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1. Introduction

Given a linear boundary value problem on a bounded regular open set Ω of RN

(PL)

{
Lu = f(x) in Ω,
+ boundary conditions ≡ (BC) on ∂Ω,

where Lu denotes an elliptic differential operator (of order 2m, m ∈ N) in divergence
form, the usual notion of weak solution is defined by introducing the associated
”energy space”, V ⊂ Hm(Ω) (the Sobolev space or order m, i.e. Dαu ∈ L2(Ω) for
any α ∈ N

N , |α| ≤ m), and then, assumed that

(1) f ∈ V ′,

we introduce the associated bilinear form a : V ×V → R, and require the condition

a(u, ζ) = 〈f, ζ〉V ′V , for any ζ ∈ V

(see [17], [1] and their many references).
A weaker notion of solution can be given leading to a correct mathematical

treatment for a more general class of data f (i.e. for f not necessarily in V ′). For
instance, for f ∈ L1

loc(Ω) the notion of very weak solution of problem (PL) can be
introduced by integrating 2m−times by parts (and not merely m−times as before)
and by requiring, merely, that u ∈ L1(Ω) and that

∫

Ω

u(x)L∗ζ(x)dx =

∫

Ω

f(x)ζ(x)dx,

for any ζ ∈ W := {ζ ∈ C2m(Ω): ζ satisfies (BC)}
W 2m,∞(Ω)

, once we assume that
∫

Ω

|f(x)ζ(x)| dx < ∞, for any ζ ∈ W.

Here L∗ denotes the adjoint operator of L.
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Most of the theory on very weak solutions available in the literature deals with
second order equations. Recently, sharper results have been obtained, to this case,
when f ∈ L1(Ω : δ), with δ = dist (x, ∂Ω). That was originally proved by Haim
Brezis, in the seventies, in a famous unpublished manuscript concerning Dirichlet
boundary conditions (see also a 1996 paper [5]). For more recent references see [29],
[20], [21] and [22]).

The main goal of my past lecture at Jaca 2010 (see [18]) was to present some
new results proving that in the case of higher order equations the class of L1

loc(Ω)
data for which the existence and uniqueness of a very weak solution can be obtained
is, in general, larger than L1(Ω : δ) (the optimal class for the case of second order
equations). For instance, for the case of the beam equation with Dirichlet boundary
conditions (u = u′ = 0 on the boundary) I proved that the optimal class of data is
the space L1(Ω : δ2) but, for instance, for the simply supported beam (u = u′′ = 0
on the boundary) the optimal class of data is again L1(Ω : δ). One of my main
arguments was the use of the Green function G(x, y) associated to the corresponding
boundary value problem.

An important open problem in our days is the searching of solutions (beyond the
class of weak solutions) for the case in which the operator L is nonlinear. Obviously,
we cannot integrate 2m−times by parts and, which seems to be more important,
we do not have any kind of Green function associated to the problem.

The main goal of this paper is to present some new results concerning very weak
solutions for nonlinear problems. Moreover, we shall give here some indications
about their numerical approximation. We point out that, without loss of generality
we can assume that the beam is represented by the interval (0, L) with L = 1 (which
we shall do in the rest of the lecture). To fix ideas I will concentrate my attention
in the nonlinear beam equation with simply supported boundaries

(BSS)





φ(u′′(x))′′ = f(x) in Ω = (0, 1),
u(0) = φ(u′′)(0) = 0,
u(1) = φ(u′′)(1) = 0,

where φ : R → R is a continuous strictly increasing function such that φ(0) = 0. A
standard example corresponds to the linear case φ(s) = EIs for any s ∈ R (E, I
positive constants) but many other cases arise in the more diverse applications
(case of non-Hookean materials such as cat iron, stone, rubber, bioelastic materials,
concrete and most of the composite materials). Again, by dimensional analysis we
can assume equal to one any constant arising in the constitutive law of the material.

So, for instance, a very often treated case in the literature is φ(s) = |s|
α−1

s for
some α > 0 (notice that α = 1 corresponds to the linear case: see [1]).

We shall also make some few comments on the case of a nonlinear cantilever
beam

(BCant)





φ(u′′(x))′′ = f(x) in Ω = (0, 1),
u(0) = u′(0) = 0,

φ(u′′)(1) = φ(u′′)′(1) = 0.

In the last section we shall consider a hinged plate (i.e. with the Navier boundary
conditions) or more in general, the N -dimensional problem

(PNd)

{
−∆φ(−∆u(x)) = f(x) in Ω ⊂ R

N ,
u = φ(−∆u) = 0, on ∂Ω.


