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Abstract. In this paper, we present a fully discretized Calderón Calculus for the two dimen-
sional Helmholtz equation. This full discretization can be understood as highly non-conforming
Petrov-Galerkin methods, based on two staggered grids of mesh size h, Dirac delta distributions
substituting acoustic charge densities and piecewise constant functions for approximating acoustic

dipole densities. The resulting numerical schemes from this calculus are all of order h
2 provided

that the continuous equations are well posed. We finish by presenting some numerical experiments
illustrating the performance of this discrete calculus.
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1. Introduction

In this paper we present a very simple and compatible Nyström discretization of
all boundary integral operators for the Helmholtz equation in a smooth parametriz-
able curve in the plane. The discretization uses a näıve quadrature method for loga-
rithmic integral equations, based on two staggered grids, and due to Jukka Saranen
and Liisa Schroderus [13] (see also [15] and [2]). This is combined with an equally
simple staggered grid discretization of the hypersingular operator, recently discov-
ered in [8]. If the displaced grids used for the discretization of these two operators
are mutually reversed, then it is possible to combine these two discretizations with
a simple minded Nyström method for the double layer operator and its adjoint.
The complete set of operators is complemented with a fully discrete version of the
single and double layer potentials. We will explain the construction of the discrete
set and reinterpret it as a non-conforming Petrov- Galerkin discretization of the
operators (using Dirac deltas and piecewise constant functions) to which we apply
midpoint integration in every element integral.

Once the semivariational form has been reached we will show inf-sup conditions
for all discrete operators involved and consistency error estimates based on asymp-
totic expansions of the error in the style of [2, 5, 6]. We will finally state and sketch
the proof of some convergence error estimates. While some of the results, for in-
dividual equations (mainly based on indirect boundary integral formulations) had
already appeared in previous papers, this is the first time that the entire Calderón
Calculus is presented in its entirety. Let it be emphasized, that this is probably the
simplest form of discretizing simultaneously all the potentials and integral operators
for the Helmholtz equation in the plane and that the methods we obtain are of
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order two. Barring the conceptual difficulty of understanding the boundary inte-
gral operators, the methods have the simplicity of basic Finite Difference Methods
and require no effort in their implementation: all discrete elements are described in
full, natural data structures can be easily figured out from the way the geometry is
sampled, and no additional discretization step (quadrature, assembly by element,
mapping to a reference element) is required. The methods will be presented for the
case of a single curve, but we will hint at its immediate extension to the case of
multiple scatterers.

In a final section devoted to numerical experiments, we will show how to use the
methods for transmission problems and how to construct combined field integral
representations.

2. Calderón calculus for exterior Helmholtz boundary problems

2.1. Potentials and operators. Let Γ be a smooth simple closed curve given by
a regular 1-periodic positively oriented parametrization x = (x1, x2) : R→ Γ ⊂ R2.
Let n(t) := (x′2(t),−x′1(t)) be a non-normalized outward pointing normal vector at
x(t) ∈ Γ. The domain exterior to Γ will be denoted Ω+. As a reminder of the fact
that we are taking limits from this exterior domain, the superscript + will be used
in trace and normal derivative operators.

Let us introduce the exterior Helmholtz equation

(1) ∆U + k2U = 0 in Ω+, ∇U(z) · ( 1
|z|z)− ıkU(z) = o( 1√

|z|
), as |z| → ∞,

where k > 0 is the wavenumber. Given 1-periodic complex-valued functions η and
ψ, the (parametrized) single and double layer potentials for the Helmholtz equation
(1) are defined, respectively, with the formulas

(
S η

)
(z) :=

ı

4

∫ 1

0

H
(1)
0 (k|z− x(t)|)η(t) dt,

(
Dψ

)
(z) :=

ık

4

∫ 1

0

H
(1)
1 (k|z− x(t)|) (z − x(t)) · n(t)

|z− x(t)| ψ(t) dt

for arbitrary z ∈ R2 \ Γ. (Here H
(1)
n is the Hankel function of the first kind and

order n.) The single and double layer potentials define radiating solutions of the

Helmholtz equation for any η, ψ. Moreover, if U is a C1(Ω+) solution of (1) and
we define

(2) ϕ = γ+U := U |Γ ◦ x, λ = ∂+
n
U := ((∇U)|Γ ◦ x) · n,

then [9, 14]

(3) U(z) = (Dϕ)(z) − (Sλ)(z), z ∈ Ω+.

We note that the representation formula (3), depending on parametrized Cauchy
data (2), can be extended to any locally H1 solution of (1). In this work we will
restrict our attention to smooth solutions though.

Associated to the layer potentials we have three integral operators.

(Vη)(s) :=
ı

4

∫ 1

0

H
(1)
0 (k|x(s) − x(t)|)η(t) dt,(4a)

(Kψ)(s) :=
ık

4

∫ 1

0

H
(1)
1 (k|x(s)− x(t)|) (x(s) − x(t)) · n(t)

|x(s) − x(t)| ψ(t) dt,(4b)

(Jη)(s) :=
ık

4

∫ 1

0

H
(1)
1 (k|x(s)− x(t)|) (x(t) − x(s)) · n(s)

|x(s)− x(t)| η(t) dt,(4c)


