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ANALYSIS OF THE DISCONTINUOUS GALERKIN INTERIOR

PENALTY METHOD WITH SOLENOIDAL APPROXIMATIONS

FOR THE STOKES EQUATIONS

ADELINE MONTLAUR AND SONIA FERNANDEZ-MENDEZ

Abstract. The discontinuous Galerkin Interior Penalty Method with solenoidal approximations
proposed in [13] for the incompressible Stokes equations is analyzed. Continuity and coercivity of
the bilinear form are proved. A priori error estimates, with optimal convergence rates, are derived.
2D and 3D numerical examples with known analytical solution corroborate the theoretical analysis.
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1. Introduction

Discontinuous Galerkin (DG) methods have become very popular for incom-
pressible flow problems, especially in combination with piecewise solenoidal approx-
imations [2, 4, 5, 7, 12, 13, 14, 15]. In the context of conforming finite elements,
solenoidal approximations were derived by Crouzeix and Raviart in [6], allowing one
to obtain a formulation involving only velocity. Nevertheless their implementation
is non-trivial and they are limited to low-order approximations. While alternative
solutions for incompressible flows are, among others, velocity-pressure formulations
satisfying the Babuska-Brezzi condition, or hp-version FEM, in a DG framework
high-order solenoidal approximations can be easily defined. This leads to an impor-
tant saving in the number of degrees of freedom, with the corresponding reduction
in computational cost, see [16].

Cockburn and collaborators [4, 5] were among the first researchers to use solenoi-
dal approximations for incompressible flows in the context of the Local Discontin-
uous Galerkin (LDG) method, and they also introduced the concept of hybrid
pressure. Later, the use of solenoidal approximations and hybrid pressure has been
applied to an Interior Penalty Method (IPM), in [13], and to a Compact Discon-
tinuous Galerkin (CDG) method, see [16, 17]. In [13], the velocity approximation
space is decomposed in every element into a solenoidal part and an irrotational part.
This allows for a splitting of the original weak form in two uncoupled problems.
The first one solves for velocity and hybrid pressure, and the second one allows
evaluating the pressure in the interior of the elements, as a post-processing of the
velocity solution.

LDG, CDG and IPM methods all lead to symmetric and coercive bilinear forms
for self-adjoint operators. But IPM and CDG methods have the major advantage,
relative to LDG, of being compact formulations, that is, the degrees of freedom of
one element are only connected to those of immediate neighbors. In [16], IPM and
CDG methods are further compared for the solution of the Navier-Stokes equations.
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Both methods present similar results for the accuracy of the numerical solution,
reaching optimal convergence rates for velocity and pressure. The main differences
are that CDG is less sensitive to the selection of the penalty parameter, but has
the major disadvantage of the implementation and computation of the lifting op-
erators. The liftings, introduced in CDG [17] as well as in LDG [4], also induce
an approximate orthogonality property and a loss of consistency, whereas IPM is a
consistent formulation with a straight-forward implementation.

This paper performs a complete analysis of the discontinuous Galerkin IPM
(DG-IPM) with solenoidal approximations and hybrid pressure, as derived and
applied to 2D examples in [13], for the incompressible Stokes equations. Standard
properties of continuity and coercivity of the obtained weak form are proved. The
error estimate for velocity proved in [13] is recalled, and a new error estimate
is derived for the post-processed interior pressure, in the case of pure Dirichlet
boundary conditions. Some intermediate results from [4, 12] are used in these
demonstrations and derivations. All demonstrations in this paper are proved for
any spatial dimension (either triangles in 2D or tetrahedra in 3D), except for the
unique solvability of the IPM problem, which is only considered for the 2D case.

The paper is structured as follows. The IPM formulation, with a splitting of the
velocity space into solenoidal and irrotational parts, is summarized in Section 2 for
the solution of the incompressible Stokes equations. Various properties of the IPM
formulation are then presented and proved in Section 3. In particular, standard
properties of continuity and coercivity of the bilinear form are proved, the error
bound for velocity is recalled and a new error bound for interior pressure is derived.
2D and 3D numerical examples with analytical solutions validate the theoretical
analysis in Section 4.

2. Discontinuous Galerkin interior penalty formulation for Stokes

Let Ω ⊂ R
nsd be an open bounded domain with boundary ∂Ω and nsd the number

of spatial dimensions. Suppose that Ω is partitioned in nel disjoint subdomains Ωi,
triangles in 2D or tetrahedral elements in 3D, with boundaries ∂Ωi that define an
internal interface Γ; the following definitions and notation are used

Ω =

nel
⋃

i=1

Ωi, Ωi ∩Ωj = ∅ for i 6= j,

and Γ :=

nel
⋃

i,j=1
i6=j

Ωi ∩Ωj =
[

nel
⋃

i=1

∂Ωi

]

\∂Ω.

The strong form for the steady incompressible Stokes problem can be written as

−∇·σ = s in Ω,(1a)

∇·u = 0 in Ω,(1b)

u = uD on ΓD,(1c)

where ΓD = ∂Ω, s ∈ L2(Ω) is a source term, and σ is the (“dynamic” or “density-
scaled”) Cauchy stress, which is related to velocity u, and pressure p, by the linear
Stokes’ law

(2) σ = −p I+ 2ν∇su,

with ν being the kinematic viscosity and ∇
s = 1

2 (∇ +∇
T ).


