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POLLUTION-FREE FINITE DIFFERENCE SCHEMES FOR
NON-HOMOGENEOUS HELMHOLTZ EQUATION

KUN WANG AND YAU SHU WONG

Abstract. In this paper, we develop pollution-free finite difference schemes for solving the
non-homogeneous Helmholtz equation in one dimension. A family of high-order algorithms is
derived by applying the Taylor expansion and imposing the conditions that the resulting finite
difference schemes satisfied the original equation and the boundary conditions to certain degrees.
The most attractive features of the proposed schemes are: first, the new difference schemes have
a 2n—order of rate of convergence and are pollution-free. Hence, the error is bounded even
for the equation at high wave numbers. Secondly, the resulting difference scheme is simple,
namely it has the same structure as the standard three-point central differencing regardless the
order of accuracy. Convergence analysis is presented, and numerical simulations are reported for
the non-homogeneous Helmholtz equation with both constant and varying wave numbers. The
computational results clearly confirm the superior performance of the proposed schemes.

Key words. Helmholtz equation, Finite difference method, Convergence analysis, High wave
number, Pollution-free, High-order schemes.

1. Introduction

In the study of time-harmonic wave propagations in one dimension, if we as-
sume the wave has a steady-state and its circular frequency is fixed, we obtain the
Helmholtz equation. The model equation to be investigated in this paper is given
by:

(1) —Uge(2) — K*u(z) = f(x), © € (0,1),
(2) u(0) = 0,
(3) g (1) — iku(1) =0,

where k£ = w/c is the wave number with w being the circular frequency, ¢ and f
represents the speed of sound and the forcing term, respectively.

The Helmholtz equation arises in many problems related to wave propagations,
such as acoustic, electromagnetic wave scattering and geophysical applications. It
has been accepted that it is a difficult computational problem to develop efficient
and accurate numerical schemes to solve the Helmholtz equation at high wave
numbers.

The foremost difficulty in the numerical solution for the Helmholtz equation is
to eliminate or minimize the “pollution effect” which causes a serious problem as
the wave number k increases [10, 17, 25]. When the wave number is small, there
is no difficulty to obtain accurate numerical solution for the Helmholtz equation.
However, the accuracy of the computed solution deteriorates rapidly for problems
at high wave numbers. Thus, eliminating or improving the pollution term will be a
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crucial issue in developing efficient and accurate numerical schemes for (1)-(3). To
overcome this difficulty, many literatures have been reported in the past decades,
and the reader is referred to [21, 22, 29, 34, 35, 41, 45, 5, 6, 16, 4] for the finite
difference method and [3, 1, 2, 10, 15, 17, 20, 23, 24, 25, 26, 27, 28, 37, 39] for the
finite element approximation. In fact, the following two issues are critical to the
“pollution effect”. First, when approximating the Helmholtz equation numerically,
the “numerical wave number” k from a resulting computational scheme will disperse
in the non-dispersive media and they may not be the same as the wave number k
from the original equation, which results the numerical dispersion. It is well-known
that for the standard finite difference method, the difference

(4) |k — k| < C1E3R?,
and for the fourth order compact scheme proposed in [21]
(5) |k — k| < C1E°R?,

where (' is a general constant independent of k, k and the mesh size h. Hereafter,
we use C to denote a general constant independent of k, k and the mesh size h,
but it may take different values at its different occurrences. For the p-version finite
element method (see [25]), we have

~ hk\2pr
6 F-kl<cik(3)
(6) [k =kl = Cik(3,
Ainsworth [2] improved the estimate for the p-version finite element method result:
- Pl N2/ hk \2
7 Pkl <Ck(r) (507)
") Rk = Ok () (3T

Recently, Zhu et al. [37] reported a better estimate by using the continuous interior
penalty finite element method

(8) |k — k| < C1kh.

The above results reveal the relationship between the original wave number k& and
the “numerical wave number” k. For a fixed kh, we observe that the difference
increases as k increases for all methods.

Another important consequence is that the “pollution effect” has a direct im-
pact on the error estimate. In the finite difference approach, Singer and Turkel [35]
proposed a fourth order scheme based on the Pade approximation. Higher order dif-
ference schemes had also been investigated in [22, 29, 34, 35, 41]. However, the error
estimates have not been analyzed. Recently, Fu presented the error estimate for a
compact fourth order finite difference method in [21]. Although it has been claimed
that the developed compact scheme is independent of the wave number, numerical
simulations reveal that all finite difference methods referred above depend on the
wave number and the “pollution effect” will become more serious as k increases.
For the finite element method, stabilities and error estimates are analyzed for the
problem (1)-(3) with PML boundary in [23]. In [10], Babuska et al. developed a
generalized finite element method such that the pollution effect is minimal. Let
h be the step size and assume that kh is fixed, Thlenburg and Babuska proposed
the h — p version finite element method in [25, 27, 28], the error estimates and dis-
persion analysis confirm that the “pollution effect” can be reduced as p increases
or h decreases. This estimate is further improved in [15]. Recently, the continu-
ous interior penalty finite element method has been proposed in [37]. Although a
modified finite element method is considered in [39], a physical spline finite element
method is investigated in [20] and a least squares finite element method with high
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