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A PARALLEL VARIATIONAL MULTISCALE METHOD FOR

INCOMPRESSIBLE FLOWS BASED ON THE PARTITION OF

UNITY

CONG XIE AND HAIBIAO ZHENG

Abstract. A parallel variational multiscale method based on the partition of unity is proposed for
incompressible flows in this paper. Based on two-grid method, this algorithm localizes the global
residual problem of variational multiscale method into a series of local linearized residual problems.
To decrease the undesirable effect of the artificial homogeneous Dirichlet boundary condition of
local sub-problems, an oversampling technique is also introduced. The globally continuous finite
element solutions are constructed by assembling all local solutions together using the partition of
unity functions. Numerical simulations demonstrate the high efficiency and flexility of the new
algorithm.
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1. Introduction

The variational multiscale method was proposed to solve multiscale problems
by Hughes and co-workers in [1, 2]. A projection of the large scales in Large
Eddy Simulation method into appropriate subspaces was introduced. Since then
much attention has been paid in this field. For example, John and Kaya [3] gave
the finite element analysis of a variational multiscale method for the Navier-Stokes
equations. Gravemeier et al. [4] also presented the three-level variational multiscale
method. Zheng et al. improved the finite element variational multiscale method by
introducing two Gauss integration method [5] and adaptive technique [6]. Zhang et
al. [7], Yu et al. [8], Shan et al. [9] et al. presented subgrid model, projection basis
and modular type to improve the variational multiscale methods, respectively.

Based on the observation that in numerical simulations low frequency compo-
nents can be approximated well by the relative coarse grid and high frequency
components can be computed on a fine grid by some local and parallel procedure,
the parallel finite element computations have been widely used [10, 11, 12, 13].
Combining the partition of unity method [14, 15] and the parallel adaptive algo-
rithm from [11], Holst [16, 17] constructed the parallel partition of unity method
(PPUM). Zheng et al. [19, 20] developed some local and parallel finite element
algorithms based on the partition of unity. Song et al. [18] presented an adap-
tive local postprocessing technique based on the partition of unity method for the
Navier-Stokes equations. There are also some papers improving the variational mul-
tiscale methods by combining with two-grid method or local and parallel techniques
[21, 22].

Received by the editors November 20, 2013 and in revised form February 25, 2014.
2000 Mathematics Subject Classification. 65N30, 65M55, 76D07, 76M10.
C. Xie was supported by HK GRC research scholarship, HKSAR GRF B-Q30J and HK Polyu

G-YJ92. H. Zheng was partially supported by NSF of China with Grant No. 11201369, 11171269,
11271298 and NCET. And he is also subsidized by the Fundamental Research Funds for the
Central Universities (Grant No. 08142003 and No. 08143007).

854



PARALLEL VARIATIONAL MULTISCALE METHOD FOR INCOMPRESSIBLE FLOWS 855

It is natural to consider to add the local parallel method to the variational mul-
tiscale method in order to retain the best features of both methods and overcome
many of their defects. In particular, we use the variational multiscle method based
on two local Gauss integrations [5] since it avoids constructing the projection op-
erator, keeps the same efficiency and does not need extra storage compared with
common VMS method. Comparing with the parallel method in [22], we add an
artificial stabilization term in the local and parallel procedure by considering the
residual as a subgrid value, which keeps the sub-problems stable. Then, an over-
sampling technique is introduced in order to overcome the undesirable effect of the
artificial homogeneous Dirichlet boundary conditions of local sub-problems. The
interesting points in this algorithm lie in: firstly, a class of partition of unity is
derived by a given triangulation, which guides the domain decomposition; second-
ly, the series of local linearized residual problems are implemented in parallel, and
they require less communication between each other; finally, the globally continu-
ous finite element solution is obtained by assembling all local solutions together via
the partition of unity functions.

The outline of the paper is as follows. We introduce the Navier-Stokes equa-
tions, the notations and some well-known results for the finite element methods in
section 2. In section 3, we first propose the parallel variational multiscale method
based on the partition of unity and then derive the error estimates. In section 4,
the implementation and some numerical simulations are presented to illustrate the
efficiency of our method. And finally a short conclusion is presented in section 5.

2. The Navier-Stokes Equations

We consider the following incompressible flows

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,(1)

u = 0 on ∂Ω,

where Ω represents a polyhedral domain in Rd (d =2, 3) with boundary ∂Ω, u, p, f
and ν > 0 represent the velocity vector, pressure, prescribed body force, kinematic
viscosity respectively. And ν is inversely proportional to the Reynolds number Re.

For a bounded domain Ω ⊂ Rd, we use the standard notations for Sobolev spaces
W s,k(Ω) and their associated norms [23, 24]. Especially when k = 2, Hs(Ω) =
W s,2(Ω) denotes the usual Soblev space, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω denotes standard
Soblev norm, (·, ·)s denotes the inner product in L2(Ω) or its vector value version.
The space H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0} is equipped with the usual norm
‖∇ · ‖0,Ω or its equivalent norm ‖ · ‖1,Ω due to the Poincare’s inequality. H−1(Ω)
is the dual space of H1

0 (Ω). In the following we will denote the spaces consisting of
vector-valued functions in boldface.

For sub-domains D ⊂ G ⊂ Ω, D ⊂⊂ G means that dist(∂D\∂Ω, ∂G\∂Ω) > 0.
Throughout the paper we use C to denote a generic positive constant whose value
may change from place to place but remains independent of the mesh parameter h.

The standard variational formulation of (1) is given by: find (u, p) ∈ (X,M)
satisfying

(2) νa(u,v) + b(u,u,v)− d(v, p) + d(u, q) = (f ,v), ∀(v, q) ∈ (X,M),

where

X = H1
0(Ω), M = L2

0(Ω) = {q ∈ L2(Ω);

∫
Ω

qdx = 0},


