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WEAK GALERKIN FINITE ELEMENT METHODS ON

POLYTOPAL MESHES

LIN MU, JUNPING WANG, AND XIU YE

Abstract. This paper introduces a new weak Galerkin (WG) finite element method for second

order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by

using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite
element partitions of arbitrary polytopes with certain shape regularity. The paper explains how

the numerical schemes are designed and why they provide reliable numerical approximations for

the underlying partial differential equations. In particular, optimal order error estimates are
established for the corresponding WG-FEM approximations in both a discrete H1 norm and the

standard L2 norm. Numerical results are presented to demonstrate the robustness, reliability,

and accuracy of the WG-FEM. All the results are established for finite element partitions with
polytopes that are shape regular.
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1. Introduction

In this paper, we are concerned with a further and new development of weak
Galerkin (WG) finite element methods for partial differential equations. Our model
problem is a second-order elliptic equation which seeks unknown function u = u(x)
satisfying

(1) −∇ · (a(x, u,∇u)∇u) = f(x), in Ω,

where Ω is a polytopal domain in Rd (polygonal or polyhedral domain for d =
2, 3), ∇u denotes the gradient of the function u = u(x), and a = a(x, u,∇u) is a
symmetric d× d matrix-valued function in Ω. We shall assume that the differential
operator is strictly elliptic in Ω; that is, there exists a positive number λ > 0 such
that

(2) ξta(x, η, p)ξ ≥ λξtξ, ∀ξ ∈ Rd,

for all x ∈ Ω, η ∈ R, p ∈ Rd. Here ξ is understood as a column vector and ξt

is the transpose of ξ. We also assume that the differential operator has bounded
coefficients; that is for some constant Λ we have

(3) |a(x, η, p)| ≤ Λ,

for all x ∈ Ω, η ∈ R, and p ∈ Rd.
Introduce the following form

(4) a(φ;u, v) :=

∫
Ω

a(x, φ,∇φ)∇u · ∇vdx.
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For simplicity, let the function f in (1) be locally integrable in Ω. We shall consider
solutions of (1) with a non-homogeneous Dirichlet boundary condition

(5) u = g, on ∂Ω,

where g ∈ H
1
2 (∂Ω) is a function defined on the boundary of Ω. Here H1(Ω) is

the Sobolev space consisting of functions which, together with their gradients, are
square integrable over Ω. H

1
2 (∂Ω) is the trace of H1(Ω) on the boundary of Ω.

The corresponding weak form seeks u ∈ H1(Ω) such that u = g on ∂Ω and

a(u;u, v) = F (v), ∀v ∈ H1
0 (Ω),(6)

where F (v) ≡
∫

Ω
fvdx.

Galerkin finite element methods for (6) refer to numerical techniques that seek
approximate solutions from a finite dimensional space Vh consisting of piecewise
polynomials on a prescribed finite element partition Th. The method is called
conforming if Vh is a subspace of H1(Ω). Conforming finite element methods are
then formulated by solving uh ∈ Vh such that uh = Ihg on ∂Ω and

a(uh;uh, v) = F (v), ∀v ∈ Vh ∩H1
0 (Ω),(7)

where Ihg is a certain approximation of the Dirichlet boundary value. When Vh
is not a subspace of H1(Ω), the form a(φ;u, v) is no longer meaningful since the
gradient operator is not well-defined for non-H1 functions in the classical sense.
Nonconforming finite element methods arrive when the gradients in a(φ;u, v) are
taken locally on each element where the finite element functions are polynomials.
More precisely, the form a(φ;u, v) in nonconforming finite element methods is given
element-by-element as follows

(8) ah(φ;u, v) :=
∑
T∈Th

∫
T

a(x, φ,∇φ)∇u · ∇vdx.

When Vh is close to be conforming, the form ah(φ;u, v) shall be an acceptable ap-
proximation to the original form a(φ;u, v). The key in the nonconforming method
is to explore the maximum non-conformity of Vh when the approximate form
ah(φ;u, v) is required to be sufficiently close to the original form.

A natural generalization of the nonconforming finite element method would occur
when the following extended form of (8) is employed

(9) aw(φ;u, v) :=
∑
T∈Th

∫
T

a(x, φ,∇wφ)∇wu · ∇wvdx,

where ∇w is an approximation of ∇ locally on each element. By viewing ∇w as
a weakly defined gradient operator, the form aw(φ;u, v) would give a new class of
numerical methods called weak Galerkin (WG) finite element methods.

In general, weak Galerkin refers to finite element techniques for partial differen-
tial equations in which differential operators (e.g., gradient, divergence, curl, Lapla-
cian) are approximated by weak forms as distributions. In [20], a WG method was
introduced and analyzed for second order elliptic equations based on a discrete weak
gradient arising from local RT [18] or BDM [9] elements. Due to the use of the RT
and BDM elements, the WG finite element formulation of [20] was limited to clas-
sical finite element partitions of triangles (d = 2) or tetrahedra (d = 3). In [21],
a weak Galerkin finite element method was developed for the second order elliptic
equation in the mixed form. The use of stabilization for the flux variable in the
mixed formulation is the key to the WG mixed finite element method of [21]. The
resulting WG mixed finite element schemes turned out to be applicable for general


