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CONVERGENT FINITE DIFFERENCE SCHEME

FOR 1D FLOW OF COMPRESSIBLE MICROPOLAR FLUID

NERMINA MUJAKOVIĆ AND NELIDA ČRNJARIĆ-ŽIC

Abstract. In this paper we define a finite difference method for the nonstationary 1D flow of
the compressible viscous and heat-conducting micropolar fluid, assuming that it is in the ther-
modynamical sense perfect and polytropic. The homogeneous boundary conditions for velocity,
microrotation and heat flux are proposed. The sequence of approximate solutions for our problem
is constructed by using the defined finite difference approximate equations system. We investi-
gate the properties of these approximate solutions and establish their convergence to the strong
solution of our problem globally in time, which is the main results of the paper. A numerical ex-
periment is performed by solving the defined approximate ordinary differential equations system
using strong-stability preserving (SSP) Runge-Kutta scheme for time discretization.

Key words. micropolar fluid flow, initial-boundary value problem, finite difference approxima-
tions, strong and weak convergence.

1. Introduction

The theory of micropolar fluid was introduced by A. C. Eringen in 1960, [8].
Eringen suggested many possible applications of the micropolar fluid, but from
the mathematical point of view the theory is still in the early stage of develop-
ment. The results for incompressible flow are very well systematized in the book
of Lukaszewicz,[11] but the theory for compressible flows, especially for the flows
involving temperature, is still in the beginning.

In this paper we focus on the compressible flow of the isotropic, viscous, and
heat conducting micropolar fluid, which is in thermodynamical sense perfect and
polytropic. The model for this type of flow was first considered by Mujaković in
[12] where she developed a one-dimensional model. The model is quite complex
from numerical point of view, as well as from theoretical standpoint. It consists
of four partial differential equations - one of which is a differential equation of
the first order, and the other three are non-linear parabolic equations of second
order. In the work [13] the local existence and uniqueness of the solution, which
is called generalized, for our model with the homogeneous boundary conditions for
velocity, microrotation and heat flux were proved, while in [13] Mujaković proved
the existence of global in time solution for the described problem. So far, the
numerical analysis of this model was done only by Faedo-Galerkin method [12, 7, 15]
that is unsuitable for wider application.

The main goal of this paper is to propose a numerical method for solving a given
model using the finite difference approach, which is more acceptable in practical
applications. We define the semidiscrete finite difference approximate equations
system and investigate the properties of the sequence of the approximate solutions.
We prove that the limit of this sequence is the solution to our problem and that
it has the same properties as the solution in [12]. In this way the convergence
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of the corresponding numerical scheme is established and furthermore, the global
existence of the solution for the considered problem, already proved in [13], verified.
In our work we follow some ideas of [3, 4].

Other authors who have discussed various models of fluid by using finite differ-
ences mainly don’t analyze the problem of convergence of approximate solutions
from a theoretical point of view. The approach used here can be applied in other
research models based on similar systems of partial differential equations.

The paper is organized as follows. In the second section we introduce the math-
ematical formulation of our problem. In the third section we derive the finite dif-
ference approximate equations system and in the fourth section present the main
result. In Sections 5-8, we prove uniform a priori estimates for the approximate
solutions. Proof of convergence of a sequence of approximate solutions to a solution
of our problem is given in the ninth section. Finally, in the tenth section we perform
the numerical experiment.

2. Mathematical model

We are dealing with the one-dimensional flow of the compressible viscous and
heat-conducting micropolar fluid flow, which is thermodynamically perfect and
polytropic. Let ρ, v, w and θ denote, respectively, the mass density, velocity,
microrotation velocity and temperature in the Lagrangian description. The mo-
tion of the fluid under consideration is described by the following system of four
equations (see, for example, [12]):

∂tρ+ ρ2∂xv = 0,(1)

∂tv = ∂x (ρ ∂xv)−K∂x(ρ θ),(2)

ρ ∂tω = A [ρ ∂x (ρ ∂xω)− ω] ,(3)

ρ ∂tθ = −Kρ2θ ∂xv + ρ2(∂xv)
2 + ρ2(∂xω)

2 + ω2 +Dρ∂x (ρ ∂xθ) .(4)

The system is considered in the domain QT = (0, 1) × (0, T ), where T > 0 is
arbitrary; K, A and D are positive constants. Equations (1)-(4) are, respectively,
local forms of the conservation laws for the mass, momentum, momentum moment
and energy. We take the following non-homogeneous initial conditions:

(5) ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), ω(x, 0) = ω0(x), θ(x, 0) = θ0(x),

and homogeneous boundary conditions:

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0(6)

∂xθ(0, t) = ∂xθ(1, t) = 0,(7)

for x ∈ (0, 1) and t ∈ (0, T ). Here ρ0, v0, ω0 and θ0 are given functions. We assume
that there exists a constant m ∈ R+ such that

(8) ρ0(x) ≥ m, θ0(x) ≥ m for x ∈ (0, 1).

Let the initial data (5) have the following properties of smoothness

(9) ρ0, θ0 ∈ H1((0, 1)) and v0, ω0 ∈ H1
0 ((0, 1)).

Because of embedding H1((0, 1)) into C([0, 1]), it is easy to check that there exists
M ∈ R+ such that

(10) ρ0(x), |v0(x)|, |ω0(x)|, θ0(x) ≤ M, for x ∈ [0, 1].

Under the stated assumptions (8)-(9) in the previous papers [12, 13] is proven that
problem (1)-(7) has unique solution (ρ, v, ω, θ) in the domain QT , for every T > 0,


